

Institut für Geometrie

Gastvortrag

$7.10.2014,\,15{:}00$ Uhr

Seminarraum 2, Kopernikusgasse 24

Optimal A Priori Discretization Error Bounds for Geodesic Finite Elements

Philipp Grohs

(ETH Zürich)

We prove optimal bounds for the discretization error of geodesic finite elements for variational partial differential equations for functions that map into a nonlinear space. For this we first generalize the well-known Cea lemma to nonlinear function spaces. In a second step we prove optimal interpolation error estimates for pointwise interpolation by geodesic finite elements of arbitrary order. These two results are both of independent interest. Together they yield optimal a priori error estimates for a large class of manifold-valued variational problems. We measure the discretization error both intrinsically using an H^1 -type Finsler norm, and with the H^1 -norm using embeddings of the codomain in a linear space. To measure the regularity of the solution we propose a nonstandard smoothness descriptor for manifold-valued functions, which bounds additional terms not captured by Sobolev norms. As an application we obtain optimal a priori error estimates for discretizations of smooth harmonic maps using geodesic finite elements, yielding the first high order scheme for this problem. (*This is joint work with H. Hardering and O. Sander*)

Johannes Wallner