
JID:YJSCO AID:1684 /FLA [m1G; v1.175; Prn:5/04/2016; 14:02] P.1 (1-15)

Journal of Symbolic Computation ••• (••••) •••–•••
Contents lists available at ScienceDirect

Journal of Symbolic Computation

www.elsevier.com/locate/jsc

Phat – Persistent Homology Algorithms Toolbox

Ulrich Bauer a, Michael Kerber b, Jan Reininghaus c,
Hubert Wagner d

a Technische Universität München (TUM), Munich, Germany
b Graz University of Technology, Graz, Austria
c CD-Adapco Inc., Vienna, Austria
d Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 January 2015
Accepted 29 November 2015
Available online xxxx

Keywords:
Persistent homology
Topological data analysis
Matrix reduction
Algorithm engineering

Phat is an open-source C++ library for the computation of per-
sistent homology by matrix reduction, targeted towards develop-
ers of software for topological data analysis. We aim for a sim-
ple generic design that decouples algorithms from data structures
without sacrificing efficiency or user-friendliness. We provide nu-
merous different reduction strategies as well as data types to store
and manipulate the boundary matrix. We compare the different
combinations through extensive experimental evaluation and iden-
tify optimization techniques that work well in practical situations.
We also compare our software with various other publicly available
libraries for persistent homology.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Motivation and related work

Persistent homology is one of the most widely applicable tools in the emerging field of com-
putational topology. Intuitively, persistent homology tracks the topological features in a growing
sequence of shapes; this includes the Betti numbers of each shape in the sequence, but also how
homology classes appear and disappear in the process. This information can be summarized into a
two-dimensional point plot summary (the persistence diagram) which has shown to be stable under

E-mail addresses: mail@ulrich-bauer.org (U. Bauer), kerber@tugraz.at (M. Kerber), hub.wag@gmail.com (H. Wagner).
http://dx.doi.org/10.1016/j.jsc.2016.03.008
0747-7171/© 2016 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.jsc.2016.03.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jsc
mailto:mail@ulrich-bauer.org
mailto:kerber@tugraz.at
mailto:hub.wag@gmail.com
http://dx.doi.org/10.1016/j.jsc.2016.03.008

JID:YJSCO AID:1684 /FLA [m1G; v1.175; Prn:5/04/2016; 14:02] P.2 (1-15)

2 U. Bauer et al. / Journal of Symbolic Computation ••• (••••) •••–•••
perturbations of the shape. For a comprehensive introduction to the theory and some applications,
see Edelsbrunner and Harer (2008, 2010).

The computation of a persistence diagram usually includes two steps: the first step is the construc-
tion of a filtered cell complex, i.e., an ordered list of cells such that every prefix forms a combinatorial
subcomplex. The filtered cell complex is often represented by its boundary matrix, a square matrix
whose indices correspond to the ordering of the cells, and whose entries encode the boundary rela-
tion of the complex. We currently only consider homology with Z2-coefficients throughout, so that
the boundary matrix has entries in {0, 1}. Given a boundary matrix, the second step is to compute the
persistent homology itself. One approach is to transform the boundary matrix in reduced form using
elementary column operations, similar to Gaussian elimination. A boundary matrix is called reduced
if different columns have different pivots. The pivot of a column is the maximal index of the nonzero
column entries. While alternative reduction methods based on matrix multiplication (Milosavljevic et
al., 2011) and rank computations (Chen and Kerber, 2013) with superior asymptotic complexity have
been presented, reduction by column operations is the basis of all efficient approaches for persistence
computation to date.

For the first reduction algorithms (Edelsbrunner et al., 2002; Zomorodian and Carlsson, 2005),
a quasi-linear complexity on many practical instance has been observed. However, the success of per-
sistent homology has triggered the need of computing persistence on more and more complicated
and larger datasets. In the last years, several heuristics with a tremendous effect on the performance
of the algorithm have been proposed: replacing homology with cohomology (de Silva et al., 2011;
Boissonnat et al., 2013), the usage of Discrete Morse Theory (Günther et al., 2011; Mischaikow and
Nanda, 2013), exploiting the special structure of boundary matrices during the reduction (Chen and
Kerber, 2011), and tuning the reductions towards parallelizable algorithms (Bauer et al., 2014a, 2014b;
Lewis and Zomorodian, 2014; Lipsky et al., 2011). While some approaches also show favorable asymp-
totic bounds in special cases, the worst-case performance remains cubic in the number of cells, as in
the original reduction algorithm.

The plethora of heuristics for persistence computations asks for a qualitative comparison of these
approaches: previous comparisons show no clear “winner” among the approaches (e.g., Chen and Ker-
ber, 2011; Boissonnat et al., 2013). While such experimental cross-evaluations are indisputably an
important quality criterion, comparing two algorithms embedded in different software libraries re-
duces the informative value of such results, because the outcome is influenced by other factors than
the algorithmic approach, for instance, programming language, implementation of low-level opera-
tions, and employed data structures.

1.2. Contributions

This paper introduces the Phat library1 as a platform for comparative evaluation of new and
existing algorithms and data structures for matrix reduction. More precisely, Phat provides a slim
generic framework for reducing a boundary matrix and we have realized several of the aforemen-
tioned heuristics in this framework (see Section 3 for more details). Moreover, each algorithm also
comes as a cohomology version by just running it on the anti-transposed matrix. We make the fol-
lowing contributions:

• We show by exhaustive experimental evaluation the tremendous impact of the clearing opti-
mization in general, and of using cohomology on wide classes of inputs, confirming earlier
reports (Chen and Kerber, 2011; Bauer et al., 2014a; de Silva et al., 2011) in a unified and easily
reproducible software framework.

• Phat provides several data structures to store matrix columns during the reduction process. Other
libraries for persistent homology neglect the effect of choosing such a column representation (an
exception is the simplex tree (Boissonnat and Maria, 2012) in the Gudhi library (Maria et al.,
2014)). We implement various data structures in Phat (Section 4) and provide the first systematic

1 http://bitbucket.org/phat-code.

http://bitbucket.org/phat-code

JID:YJSCO AID:1684 /FLA [m1G; v1.175; Prn:5/04/2016; 14:02] P.3 (1-15)

U. Bauer et al. / Journal of Symbolic Computation ••• (••••) •••–••• 3
comparison. In particular, we propose the use of accelerated column representations, using different
data structures for the storage and the addition of columns in a matrix. Our experiments reveal
that the choice of a column representation has a similar effect on the performance as the choice
of the reduction algorithm.

• We present a column representation based on a novel data structure called bit_tree. In
essence, it implements a dense bit set, additionally supporting fast maximum queries, itera-
tion, insertion, and deletion. This is currently our fastest data structure for additions of (binary)
columns.

• We cross-evaluate Phat with the publicly available persistence libraries Dionysus, JavaPlex,
Gudhi and Perseus. We demonstrate that with the optimal choice of reduction strategy and col-
umn representation, Phat outperforms these libraries for the computationally demanding task of
matrix reduction. Moreover, our results suggest that substantial speed-ups could be achieved in
other libraries by relatively simple optimization techniques.

1.3. Outline

We explain the design of our library in Section 2; in particular, our reduction scheme is parameter-
ized by a choice of a reduction algorithm and a column representation. In Section 3, we describe the
choices of reduction algorithms available in Phat. The options for column representations are given
in Section 4. We report on experiments in Section 5, testing the performance of different algorithms
and data structures as well as comparing Phat with related libraries. We conclude by summarizing
our findings and giving an outlook to the future development of the library in Section 6.

2. Design

Phat is an object-oriented C++ library consisting of about 3200 lines of code. This rather small
number stems from its focus on computing persistent homology from a boundary matrix in an ex-
tendible, simple, and efficient way. In particular, Phat does not provide code to construct a boundary
matrix from point cloud or image data. Code redundancy is limited by using the generic programming
paradigm, as explained below.

The main design aim is to decouple a matrix reduction algorithm from matrix representation. This
way different combinations of representations and algorithms can be easily tested and benchmarked.
Matrix representation takes care of implementation of storage and basic operations such as column
addition. The reduction algorithm chooses the order in which matrix operations are performed.

We use the policy-based design paradigm, using C++’s mechanism of templates. The two orthog-
onal policies, or strategies, are modeled as C++ classes, and are combined at compile-time. There is
no run-time overhead, as opposed to using dynamic polymorphism. This is crucial for performance,
as the boundary matrix operations dominate the computation time and need to be as efficient as
possible. For more details on policy-based design and generic programming in general, we refer to the
textbooks Alexandrescu (2001), Austern (1999).

As an example, the main function of the library is declared as:

template<typename ReductionAlgorithm, typename Representation>
void compute_persistence_pairs(persistence_pairs& pairs,

boundary_matrix<Representation>& matrix);

The function has two template parameters: Representation defines the data structure for the
boundary_matrix class, and determines how columns are stored and manipulated. We will ex-
plain this indirection in a moment. ReductionAlgorithm defines a function object performing a
particular matrix reduction strategy.

Intuitively, compute_persistence_pairs glues together the algorithm and matrix represen-
tation. The actual implementation simply takes a matrix as input and reduces it using the supplied
reduction strategy. Then, it stores the resulting persistent pairs in the container pairs. Phat cur-
rently implements 5 different reduction algorithms and 8 matrix representations, resulting in a total
of 40 different combinations of polices.

JID:YJSCO AID:1684 /FLA [m1G; v1.175; Prn:5/04/2016; 14:02] P.4 (1-15)

4 U. Bauer et al. / Journal of Symbolic Computation ••• (••••) •••–•••
Since a boundary matrix interfaces between the user code and our library, we explain its design
rationale. It is implemented using the following class template:

template<typename Representation = default_representation>
class boundary_matrix {

Representation rep;
int get_max_index(int idx);
void add_to(int source, int target);
...

};

The boundary_matrix class specifies the interface to a user. The actual implementation de-
pends on the Representation data structure, transparent to the user. Moreover, a default repre-
sentation is provided, which simplifies the first contact with the library.

The additional indirection introduced by the boundary_matrix class is motivated by the ex-
plicit specification of the interface of the class. This is useful, for example, for code completion tools,
which do not work for template arguments without an explicit interface declaration. Additionally, the
boundary_matrix class exposes other useful functions like file input/output, which are indepen-
dent of the representation.

Several matrix representations are implemented using STL collections. Since we presently only
work with binary matrices, all the data structures simply store the indices of the nonzero entries for
each column. In addition, the dimensions of the cells in the filtration are stored in a vector. For
more details see Section 4.

The design of Phat decouples the reduction algorithm from the implementation of matrix storage
and operations. As shown in Section 5, both aspects are equally important for an efficient implementa-
tion. Our design allows us to easily benchmark all configurations and identify the most efficient ones.
We describe the options provided by the Phat library below. Finally, we hide some of the complexity
from the user by providing default strategies and easy to use wrapper classes.

3. Algorithms

We use the following notation throughout this paper. The pivot index of a column in the matrix
is the largest index of any nonzero entry. All our reduction algorithms perform left-to-right column
additions until no two columns have the same pivot index. A matrix with this property is called
reduced. Recall that we restrict to Z2-homology in this paper, so adding two columns with the same
pivot index results in a column with a strictly smaller pivot index, or a zero columns if the columns
were equal.

Phat 1.4.1 provides five different choices of reduction strategies, two of which have a parallel im-
plementation using the OpenMP API.2 As a running (toy) example, we consider the complex depicted
in Fig. 1 (left). The simplices are added in the order of their indices, and the resulting boundary
matrix is given in Fig. 1 (right).

3.1. Sequential algorithms

The standard algorithm for reducing boundary matrices (Edelsbrunner et al., 2002;
Cohen-Steiner et al., 2006) traverses the columns from left to right and maintains the invariant that
after having traversed the j-th column, the first j columns of the matrix form a reduced submatrix.
For handling the j-th column, we check whether its pivot index appears as pivot index of a previous
column, say column i, which would violate the invariant. In this case, we add column i to column j,
which eliminates the nonzero pivot entry and thus decreases the pivot index, and repeat until the
pivot index does not appear as a pivot index in a previous column or the column becomes zero.

2 www.openmp.org.

http://www.openmp.org

JID:YJSCO AID:1684 /FLA [m1G; v1.175; Prn:5/04/2016; 14:02] P.5 (1-15)

U. Bauer et al. / Journal of Symbolic Computation ••• (••••) •••–••• 5
Fig. 1. An example complex of dimension 2 (left), its boundary matrix (middle), and the reduced boundary matrix computed by
the standard algorithm (right). The pivot entry of a column is given in bold.

As an example, we explain the execution of the algorithm on the complex from Fig. 1. The only
manipulation of the boundary matrix is a left-to-right column addition of the form R j ← R j + Ri ,
where Ri , R j are columns of the matrix and i < j. We write j ← j + i as a notational shortcut for this
operation. Then, the standard algorithm traverses the columns from 1 to 12 in order and performs
the following operations sequentially:

6 ← 6 + 5,6 ← 6 + 3,10 ← 10 + 9,11 ← 11 + 10,11 ← 11 + 5.

The resulting reduced matrix has pivots at indices

(2,3), (4,5), (8,9), (7,10), (6,12),

which are the persistence pairs. The standard algorithm computes two representative cycles of a ho-
mology class represented by the persistence pair (i, j): on the one hand, the (nonzero) j-th column
of the reduced matrix encodes a cycle that becomes a boundary at this point, and thus represents the
homology class just before it dies. On the other hand, the linear combination of columns that turns
the i-th column to zero yields another representative of the homology class, at the moment the class
is born. For instance, in our example above, we reduced column 6 by adding columns 3, 5, and 6,
which indeed represents the cycle formed when adding edge 6 in Fig. 1 (left) (see also Edelsbrunner
and Harer, 2010, §VII.1).

The algorithm twist (Chen and Kerber, 2011) is based on the standard algorithm and exploits
the observation that a column will eventually be reduced to an empty column if its index appears
as the pivot of another column. By reducing columns in decreasing order of the dimensions of the
corresponding cells, we can explicitly clear the columns whose indices appear as pivot indices. This
is done by performing the reduction in multiple passes, one for each dimension. Clearing does not
affect the reduction of other columns – the resulting reduced matrix is therefore the same as in the
standard algorithm. Since the omitted column operations often constitute the bulk of the column
operations in the standard algorithm, the clearing optimization can have a tremendous impact on
practical performance. It is therefore also used in all other algorithms described below. Due to its
simplicity and efficiency, the twist algorithm is the default in Phat.

In our example, the twist reduction traverses the columns in order

12,3,5,6,9,10,11,1,2,4,7,8

(first triangles, then edges, then vertices). We let i ← 0 denote the operation of setting column i to
zero. Then, the following operations are performed:

6 ← 0,10 ← 10 + 9,11 ← 11 + 10,11 ← 11 + 5.

The reduced matrix is equal to the reduced matrix of the standard algorithm (for all inputs), and
therefore, also the persistence pairs are the same.

The twist optimization only computes a single representative for each homology class: for a persis-
tence pair (i, j), the j-th column represents the homology class just before it dies as in the standard
algorithm, but the representation of the class at its time of birth is avoided. This is precisely the

JID:YJSCO AID:1684 /FLA [m1G; v1.175; Prn:5/04/2016; 14:02] P.6 (1-15)

6 U. Bauer et al. / Journal of Symbolic Computation ••• (••••) •••–•••
Fig. 2. The block-wise reduction order of the spectral sequence algorithm.

reason for the computational savings. The idea of avoiding the computation of multiple representa-
tives is also implicitly employed in the persistent cohomology algorithms implemented in the libraries
Dionysus and Gudhi.

In the row algorithm (de Silva et al., 2011), we maintain the invariant that after the j-th iteration,
the submatrix formed by the lowest j rows of the matrix is reduced. To handle the j-th iteration, we
let k denote the row index of the j-th row from the bottom, that is, k = n − j + 1 with n the number
of simplices. If there are two or more columns with k as their pivot index, the invariant is violated.
We let Ri denote the leftmost such column, and we add Ri to every further column with the same
pivot index. We further integrate the clearing optimization in the algorithm: if k appears as a pivot
index, we clear column k at the end of the j-th iteration.

In our example, the algorithm performs the following operations:

10 ← 10 + 9,11 ← 11 + 10,6 ← 0,11 ← 11 + 5.

Note that this is a permutation of the operations performed in the twist variant and it yields the same
reduced matrix. This is true in general. The advantage of the row algorithm is that the algorithm does
not have to store any reduced columns for further iterations: with the notation above, after Ri has
been added to all columns with same pivot index, Ri is not needed for any further operations in the
algorithm. This can result in memory savings because there is no need to save the entire reduced
matrix in memory (de Silva et al., 2011).

3.2. Parallel algorithms

The algorithm spectral_sequence is an implementation of the parallel algorithm outlined
in Edelsbrunner and Harer (2010). We conceptually divide the boundary matrix into m2 blocks of
(roughly) equal size. We then reduce the matrix block-wise, starting from the diagonal, moving up-
wards towards the upper-right corner; see Fig. 2 for an illustration. Reducing a block means that we
ensure that no two columns have the same pivot element within the block; in particular, reducing a
block might only partially reduce the corresponding columns, and the reduction is finished at a later
stage when another block is reduced. We can observe that the reductions of blocks within the same
diagonal (i.e., blocks 1–6, blocks 7–11, etc.) are independent and can thus be computed in parallel.
For that reason, we choose m as the number of available processors of the given machine.

The chunk algorithm (Bauer et al., 2014a) begins, similarly to the spectral sequence algorithm,
with the reduction of the two main diagonals of blocks (blocks 1–6 and 7–11 in the example above).
In a second step, it simplifies the partially reduced boundary matrix by eliminating the indices of
the already found pairs from the matrix. Finally, the simplified matrix is reduced using the twist al-
gorithm. The chunk algorithm is a generalized version of the approach in Günther et al. (2012) to
compute persistence using discrete Morse theory (Forman, 1998): Collapses based on Morse match-
ings are replaced with elimination of local persistence pairs, allowing for the removal of pairs of
non-incident simplices of the complex. The first and the second step of the algorithm can be run in
parallel, respectively. The algorithm exploits the fact that the simplified matrix is much smaller than
the original matrix for many inputs, and the final (and non-parallel) step therefore tends to finish fast
in practice.

JID:YJSCO AID:1684 /FLA [m1G; v1.175; Prn:5/04/2016; 14:02] P.7 (1-15)

U. Bauer et al. / Journal of Symbolic Computation ••• (••••) •••–••• 7
3.3. Duality of persistence

Every algorithm for persistent homology also yields an algorithm for persistent cohomology by
applying it to the corresponding coboundary matrix. This matrix is given by the anti-transpose of the
boundary matrix D , obtained by swapping Di, j with Dn+1− j, n+1−i . Reducing the coboundary matrix
yields the same persistence pairs, up to reindexing. As an example, we consider the matrix from
above, whose anti-transpose is the following matrix (the dashed line shows the anti-diagonal along
which the entries are reflected):

∂ 1 2 3 4 5 6 7 8 9 10 11 12
1 1 1 1
2 1 1
3 1 1
4 1 1
5
6
7 1 1
8 1 1
9

10 1 1
11
12

Applying the standard algorithm yields the following sequence of operations:

6 ← 6 + 5,8 ← 8 + 7,10 ← 10 + 7,12 ← 12 + 11,12 ← 12 + 9,12 ← 12 + 6.

We obtain the persistence pairs (4, 5), (3, 6), (1, 7), (8, 9), (10, 11). Replacing a pair (i, j) with
(n − j + 1, n − i + 1), we obtain the same persistence pairs as above.

In some cases, computing persistent cohomology is significantly faster than persistent homol-
ogy (de Silva et al., 2011), in particular for the common case of Vietoris–Rips filtrations. For con-
venience, Phat contains a dualization option, which anti-transposes the matrix before applying the
reduction algorithm. However, in practice this expensive dualization process should be avoided and
the coboundary matrix should be generated directly from the input, as done in the library Dipha

(Bauer et al., 2014b). Instead of reducing the coboundary matrix, one may alternatively apply a dual
algorithm: the aforementioned libraries Dionysus and Gudhi implement persistent cohomology algo-
rithms that directly operate on the boundary matrix.

4. Data structures

All boundary matrix data structures currently implemented in Phat use a vector containing
the individual columns. The column type is defined by the representation. There are two groups of
representations in Phat, direct and accelerated, which are described below. To simplify notation, we
refer to the number of nonzero entries of a column as its size.

4.1. Direct representations

A direct representation simply stores every column of the matrix using the same data type. We
provide various options which are based on several container types from the STL library (Austern,
1999). The class vector_list represents a column as a doubly-linked list (list<int>) storing
the indices of nonzero entries in increasing order, as suggested in Edelsbrunner and Harer (2010).
Adding two columns of sizes k and m can therefore be performed in time O (k +m) by computing the
symmetric difference of the lists. The pivot of a column can be found in O (1) by querying the last
element of the list.

The representation vector_vector is analogous, using a dynamically growing array
(vector<int>) instead of a linked list. This representation is more machine friendly, since it makes
use of a contiguous memory region. However, both representations have the disadvantage that column
additions are expensive when a small column is added to a large column.

JID:YJSCO AID:1684 /FLA [m1G; v1.175; Prn:5/04/2016; 14:02] P.8 (1-15)

8 U. Bauer et al. / Journal of Symbolic Computation ••• (••••) •••–•••
An alternative representation is vector_set, where columns are stored as balanced binary
search trees (set<int>). Adding a column A of size k to a column B of size m can be performed
as follows. We iterate through the entries of A, removing the entry from B if it is already present,
and inserting it otherwise. The complexity of such an addition is O (k log(k + m)), which can be much
better than O (k + m) when k � m. The pivot of a column can be found in O (1).

The representation vector_heap combines the advantages of contiguous storage and efficient
column addition. Columns are again stored as vector<int>, but the indices are now arranged in
heap order. Adding a column A of size k to a column B of size m can be lazily performed by inserting
the indices of A into B in amortized time O (k log(k +m)). This implies that an index may temporarily
appear multiple times in the heap. The symmetric difference operation is delayed until a certain
number of insertions is exceeded or the content of the column is queried. This allows for the pivot of
a column of size k to be found in amortized time O (1).

4.2. Accelerated representations

An accelerated representation is an extension of vector_vector from above. It provides an
additional data type optimized for fast column additions. The representation contains one object of
this type, called the working column (the parallel versions contain one working column per execution
thread). Before a column gets manipulated through column addition, it is loaded into the working col-
umn (that is, converted into the working column type), and converted back into vector representation
when another column gets manipulated. This conversion is done in the method make_pivot_col
of the class abstract_pivot_column whenever a column with a different index is accessed,
thereby always keeping the last accessed column in the working column data structure. Similar to
vector_heap, this strategy combines contiguous storage with efficient column additions. For a net
gain in performance, efficient conversion between vector<int> and the working column type is
required. Moreover, the employed algorithm needs to exhibit a cache-friendly access pattern for ma-
nipulating columns. This is the case for all (sequential) algorithms of Section 3 except for the row
algorithm. The use of accelerated representation in connection with the row algorithm is therefore
discouraged.

A simple yet reasonably efficient choice for the working column is set<int>. The resulting repre-
sentation is called sparse_pivot_column. Another option is the use of a heap as explained in the
description of vector_heap. The corresponding representation is called heap_pivot_column.

Another accelerated representation, full_pivot_column, explicitly stores a dense bit vector
corresponding to the currently reduced column. The bit vector requires n bits of memory, and allows
for fast insertions and removal. To facilitate finding the pivot (maximum) value, we pair the bit vector
with a max-heap. When converting the bit array back into a vector<int>, we repeatedly extract
and remove the pivot in order to clear the structure for further use.

Adding a column of size k to this representation still takes time O (k log(k + m)) due to the heap
operations. However, compared to sparse_pivot_column, memory locality is significantly im-
proved.

4.3. Bit tree

As an extension, we propose the bit_tree_pivot_column representation, which uses a spe-
cialized data structure we call a bit tree. A bit tree is a hierarchical, dense bit vector, stored as a
contiguous block of bits, which implicitly encodes an 64-ary tree. It simplifies the idea behind the
classical van Emde–Boas trees (Cormen et al., 2009). The summary structure is different: Instead of
using recursion, we use a single integer, interpreted as a bit vector of size 64. All relevant opera-
tions exploit the current hardware and are very efficient. Additionally, the height of the tree is only
�log64 n�. Hence, the height is bounded by 6 for all currently realistic inputs.

A bit tree supports fast insertions, deletions and lookup of entries, as well as maximum, minimum,
successor, and predecessor queries, all in time O (log64 n) = O (log n). It can also be cleared in time
proportional to the number of nonzero entries, so sparse columns are handled efficiently and once the
structure is initialized, it can be reused for all consecutive reductions.

JID:YJSCO AID:1684 /FLA [m1G; v1.175; Prn:5/04/2016; 14:02] P.9 (1-15)

U. Bauer et al. / Journal of Symbolic Computation ••• (••••) •••–••• 9
Table 1
Running times (in seconds) of different combinations of algorithms and data structures. The prefix “A-” refers to accelerated
representations, while (·)∗ denotes dualization. The input data is the 3-skeleton of the Vietoris–Rips filtration of 64 points on a
2-sphere.

List Vector Set Heap A-Heap A-Set A-Full A-Bit-Tree

standard 17.1 2.8 7.5 5.9 5.6 8.6 2.3 1.62
standard∗ 2580.0 168.0 17.3 13.5 14.6 16.0 3.9 0.57
twist 16.3 2.7 7.0 5.7 5.4 6.5 2.2 1.59
twist∗ 0.23 0.03 0.04 0.02 0.03 0.03 0.02 0.02
row 39.9 4.3 20.3 7.2 21.4 37.9 15.5 13.8
row∗ 0.25 0.06 0.06 0.05 0.08 0.09 0.05 0.05

chunk 0.63 0.19 0.6 0.50 0.35 0.5 0.24 0.24
chunk∗ 2.9 0.42 0.1 0.11 0.17 0.14 0.07 0.04
spectral 10.7 1.8 4.03 3.3 3.4 4.3 2.1 1.2
spectral∗ 0.35 0.03 0.05 0.04 0.04 0.04 0.02 0.01

While the worst-case complexity of the main operations is theoretically worse than the O (log log n)

complexity of van Emde–Boas trees, our data structure is more efficient in practice, and simpler to
implement.

5. Experiments

To evaluate the performance of the different algorithms and data structures, we perform compu-
tational experiments using three data sets. The requisite boundary matrices were generated using the
create_phat_filtration tool included in Dipha. The running times are measured on a worksta-
tion with two Intel Xeon E5645 CPUs using the integrated benchmark utility from Phat 1.4.1. Parallel
algorithms are performed on 24 logical cores, the maximum available on the workstation. We use
Visual Studio 2013 to produce 64 bit executables, and Java 8.0_66 in 64 bit mode. All data sets are
available on the project homepage (http://bitbucket.org/phat-code).

5.1. Rips filtrations

The first data set is the 3-skeleton of the Vietoris–Rips filtration of a point cloud generated by a
uniform random sample of the 2-sphere. Using 64 points, the resulting boundary matrix has 679 120
columns and 2 670 528 nonzero entries. The running times in seconds for the matrix reduction of
this data set are shown in Table 1, where we denote the computation of persistent cohomology (i.e.,
the algorithm applied on the coboundary matrix) by an asterisk. The combination of persistent co-
homology with algorithms employing the clearing optimization leads to drastically shorter running
times compared to other choices. To admit a meaningful comparison for these fast algorithms, we
repeat the experiment using 192 points, resulting in a boundary matrix with 56 050 288 columns and
223 002 432 nonzero entries. The running times in Table 3 also show the importance of choosing an
appropriate data structure for column operations; in particular, the “standard choices” of list and
vector yield running times significantly worse than other choices. The twist and row algorithms
show comparable running times for non-accelerated column types, which is not surprising because
both algorithms perform the same column operations, just in different orders. The striking perfor-
mance penalty when using accelerated representations for the row algorithm is due to the reduction
strategy of the row reduction, which interleaves the reduction of several columns. This results in
many changes of the working column (cf. Section 4.2) and slows down the algorithm because of the
numerous conversions from vector into the working column type and vice versa. Finally, the simple
sequential twist algorithm is about as fast as the parallel algorithms on these examples.

5.2. Three-dimensional images

The second data set is a sublevel set filtration of a cubical complex generated from a 3D image
that indicates separation behavior in a vector field (Kasten et al., 2014). The cubical complex is a grid

http://bitbucket.org/phat-code

JID:YJSCO AID:1684 /FLA [m1G; v1.175; Prn:5/04/2016; 14:02] P.10 (1-15)

10 U. Bauer et al. / Journal of Symbolic Computation ••• (••••) •••–•••
Table 2
Running times (in seconds) of selected combinations of algorithms and data structures for the 3-skeleton of the Vietoris–Rips
filtration of 64 points on a 2-sphere. See Table 1 for details.

List Vector Set Heap A-Heap A-Set A-Full A-Bit-Tree

twist∗ 0.23 0.03 0.04 0.02 0.03 0.03 0.02 0.02
spectral∗ 0.35 0.03 0.05 0.04 0.04 0.04 0.02 0.01

standard∗ twist∗ chunk∗ spectral∗

A-Bit-Tree 0.57 0.02 0.04 0.01

Table 3
Running times in seconds for the 3-skeleton of the Vietoris–Rips filtration of 192 points on a 2-sphere. See Table 1 for details.

List Vector Set Heap A-Heap A-Set A-Full A-Bit-Tree

twist∗ 2635.4 339.9 4.9 2.0 2.5 6.1 2.1 1.0
spectral∗ 2644.8 349.2 5.2 1.9 3.3 6.6 3.1 1.0

Table 4
Running times in seconds for a 643 image data set. See Table 1 for details.

List Vector Set Heap A-Heap A-Set A-Full A-Bit-Tree

standard 141.1 16.1 23.9 17.5 19.4 21.5 10.8 10.7
standard∗ 460.2 39.6 27.5 18.8 20.8 22.8 14.0 9.8
twist 9.8 0.54 0.30 0.11 0.13 0.13 0.09 0.07
twist∗ 337.1 18.6 0.99 0.52 0.52 0.72 0.24 0.11
row 9.9 1.5 0.50 0.48 1.5 2.1 1.2 0.78
row∗ 350 43.8 1.0 0.93 24.5 44.0 15.5 7.0

chunk 1.8 0.19 0.19 0.12 0.09 0.09 0.08 0.08
chunk∗ 5.7 0.53 0.27 0.22 0.19 0.17 0.13 0.14
spectral 8.4 0.78 0.19 0.11 0.11 0.11 0.08 0.06
spectral∗ 339.2 21.9 0.90 0.65 0.74 0.74 0.35 0.12

Table 5
Running times in seconds of selected combinations of algorithms and data structures for a 643 image data set. See Table 1 for
details.

List Vector Set Heap A-Heap A-Set A-Full A-Bit-Tree

twist 9.8 0.54 0.30 0.11 0.13 0.13 0.09 0.07
chunk 1.8 0.19 0.19 0.12 0.09 0.09 0.08 0.08
spectral 8.4 0.78 0.19 0.11 0.11 0.11 0.08 0.06

Standard Twist Chunk Spectral

A-Bit-Tree 10.7 0.07 0.08 0.06

with one vertex per voxel, and the function assigns to each vertex the corresponding voxel value and
to each higher-dimensional cube the maximum value of its vertices (lower star filtration). Using a 643

sub-region of the image, we get a boundary matrix with 2 048 383 columns and 6 096 762 nonzero
entries. The running times for this data set are shown in Table 4. We observe that homology compu-
tation is generally faster than cohomology computation for this data set, and the clearing optimization
is again crucial for a fast algorithm. To investigate the performance behavior further, we also apply a
selection of the fastest algorithms to the full data set consisting of 2563 voxels – the corresponding
boundary matrix has 133 432 831 columns and 399 515 130 nonzero entries. The results in Table 6
demonstrate the usefulness of the accelerated data structures introduced in Section 4.2. In contrast to
the first data set, the parallel algorithms perform faster than the sequential methods in this case. The
speedup compared to the implementation as proposed in Edelsbrunner and Harer (2010) exceeds a
factor of 1000.

JID:YJSCO AID:1684 /FLA [m1G; v1.175; Prn:5/04/2016; 14:02] P.11 (1-15)

U. Bauer et al. / Journal of Symbolic Computation ••• (••••) •••–••• 11
Table 6
Running times in seconds for a 2563 image data set. See Table 1 for details.

List Vector Set Heap A-Heap A-Set A-Full A-Bit-Tree

twist 2080.2 101.7 26.4 11.3 11.1 12.3 10.4 8.8

chunk 894.5 156.1 9.8 6.5 6.3 6.2 5.6 4.7
spectral 1197.7 261.7 11.9 8.5 8.5 8.4 7.1 6.1

Table 7
Running times in seconds for a flag complex filtration of graphs induced by the cosine dissimilarity measure of text documents.

List Vector Set Heap A-Heap A-Set A-Full A-Bit-Tree

twist∗ 424.9 24.6 37.2 32.0 25.2 29.1 8.3 2.80

chunk∗ 418.7 25.2 37.6 28.8 25.2 29.4 9.0 2.86
spectral∗ 381.1 27.2 31.7 25.1 22.7 26.3 8.6 2.92

5.3. Dissimilarity measures

The third data set comes from an application of persistent homology in text mining (Wagner and
Dłotko, 2014). We consider a filtration of flag complexes of graphs induced by dissimilarities between
1500 text documents. The data set represents the boundary matrix of the 4-skeleton of this complex.
It contains 1 448 504 columns and 7 002 178 nonzero entries.

The running times for this data set are shown in Table 7. This data set is challenging, and we
show only the algorithms which could finish within reasonable time frame. We can observe that all
the algorithms behave similarly. As for the data structures, A-Full and A-Bit-Tree are clearly more
efficient than the remaining ones, the latter one outperforming the non-accelerated data structures
by a factor of 8. We attribute this effect in part to the small number of dynamic memory allocations
required in A-Full and A-Bit-Tree.

5.4. Comparison with other packages

We compare Phat (version 1.4.1) with several publicly available software packages for persis-
tence: Dionysus (Morozov, 2010) (revision r280), JavaPlex (Adams et al., 2014) (version 4.2.1),
Perseus (Nanda, 2013) (version 4 beta 4) and Gudhi (Maria et al., 2014) (version 1.1.0). In our
experiment, we are focusing entirely on the matrix reduction performance of these libraries;
we ignore peripheral computations, such as the creation of the (co)boundary matrix, which
is provided by most libraries. All timings were measured using std::clock() in C++ and
System.currentTimeMillis() in Java.

There are several other libraries for persistence that we have not included in our comparison for
various reasons: The Dipha library (Bauer et al., 2014b) performs reduction using a spectral sequence
algorithm and heap representation of the columns. On a shared memory system, it therefore exhibits
running times roughly comparable to Phat with the appropriate parameters. The Ctl library3 is cur-
rently still under development. The R package Tda (Fasy et al., 2015) provides an interface to Gudhi,
Dionysus, and Phat. The package RedHom

4 uses Phat internally for matrix reduction.

5.5. Configuration details

For evaluating the performance of Dionysus, we used the example file
rips-pairwise-cohomology.cpp provided with the package. The algorithm is described in
de Silva et al. (2011). It is a dual algorithm, in the sense that it takes a boundary matrix as input

3 http://ctl.appliedtopology.org/.
4 http://capd.sourceforge.net/capdRedHom/index.php.

http://ctl.appliedtopology.org/
http://capd.sourceforge.net/capdRedHom/index.php

JID:YJSCO AID:1684 /FLA [m1G; v1.175; Prn:5/04/2016; 14:02] P.12 (1-15)

12 U. Bauer et al. / Journal of Symbolic Computation ••• (••••) •••–•••
Table 8
Running times in seconds for the datasets from Tables 1–6. For the first two instances, Phat is applied on the coboundary
matrix. (m) indicates that the program failed to finish due to consuming more than 64 gigabytes of RAM. A missing number
indicates that the data set is not supported by the software.

Dionysus JavaPlex Perseus Gudhi Phat (simple) Phat (opt)

Rips 64 2.6 4.4 18.0 0.15 0.02 0.01
Rips 192 359 465 (m) 9.8 2.0 1.0
Image 643 163 11 139 0.11 0.06
Image 2563 (m) (m) 11.3 4.7

and computes persistent cohomology, so it should be compared to Phat with a coboundary ma-
trix as input. We note that this algorithm also employs an equivalent to the clearing optimization.
Specifically, in contrast to the standard algorithm applied to the coboundary matrix, this algorithm
only computes one cocycle corresponding to a birth in persistent cohomology, similarly to the effect
achieved by the clearing optimization. Consequently, it performs significantly faster than the alterna-
tive rips-pairwise.cpp, which computes persistent homology using the standard algorithm.

The benchmark for Gudhi is based on the examples rips_persistence.cpp and
performance_rips_persistence.cpp provided with the package. The algorithm is an im-
proved implementation of the persistent cohomology algorithm found in Dionysus (de Silva et
al., 2011), using specialized data structures (Boissonnat et al., 2013). We used the data structure
Hasse_complex<> for comparing the reduction time, since it provides faster performance for re-
duction than the more memory-efficient data structure Simplex_tree<> (Boissonnat and Maria,
2012), which is only used for constructing the filtration here. We note that generating and subse-
quently performing reduction the Hasse_complex<> takes about the same time as performing
reduction directly on the Simplex_tree<>.

In JavaPlex, we used Plex4.getDefaultSimplicialAlgorithm for Rips filtrations and
Plex4.getDefaultCellularAlgorithm for image data to compute persistence with Z2 co-
efficients using the standard algorithm. JavaPlex provides the option of dualizing the input using the
class DualStream. We have not used this option, as it did not lead to an improvement in perfor-
mance. We attribute this to our observation that computing persistent cohomology of Rips filtrations
is only beneficial in combination with the clearing optimization (see Table 1), which apparently is not
implemented in JavaPlex.

The benchmark for Perseus is based on the file Pers.cpp provided with the software. We chose
the option to perform alternating Morse reductions and coreductions before the computation of per-
sistence pairs, which leads to the best performance. Since the Morse (co)reductions are part of the
reduction strategy and corresponds to boundary matrix operations, they are also accounted for in our
timing. We stress that Phat and Perseus interpret cubical data differently: Phat interprets the image
voxel values as values at the vertices of a cubical complex, whereas Perseus interprets them as val-
ues at the maximal cubes. Up to boundary effects, the filtration based on maximal cubes is dual to
the vertex-based filtration of the negated function. Note, however, that the two constructions are not
entirely symmetric with respect to dimension. The results in Table 4 indicate that dualization has a
significant effect on performance.

In Table 8, we list the running times of the reduction using the Vietoris–Rips and image data sets
described earlier. Since no tested library except Perseus provided direct support for cubical image
data, we omit a comparison for these libraries.

We compare with two configurations from Phat: The simple configuration uses the twist al-
gorithm and the column type vector_heap, both having an elementary implementation. The opt
configuration refers to the fastest reduction among all options in Phat, as determined in Tables 1, 3,
4 and 6.

The results of Table 8 indicate that the matrix reduction performance of Phat is faster but still in
the same order of magnitude as Gudhi (confirming the observation in Boissonnat et al., 2013) and
clearly ahead of other libraries.

Table 9 shows memory usage, measured as the peak working set size in bytes. Dionysus,
Gudhi and Phat show similar memory consumption. Gudhi is most memory-efficient when us-

JID:YJSCO AID:1684 /FLA [m1G; v1.175; Prn:5/04/2016; 14:02] P.13 (1-15)

U. Bauer et al. / Journal of Symbolic Computation ••• (••••) •••–••• 13
Table 9
Memory consumption in megabytes or gigabytes. See Table 8 for more details.

Dionysus JavaPlex Perseus Gudhi Phat (simple) Phat (opt)

Rips 64 60 MB 270 MB 718 MB 44 MB 53 MB 61 MB
Rips 192 4.9 GB 12.3 GB (m) 3.1 GB 3.6 GB 3.8 GB
Image 643 2.04 GB 1.5 GB 0.16 GB 0.16 GB
Image 2563 (m) (m) 10.2 GB 10.3 GB

ing the Simplex_tree<> data structure, which is therefore used in this comparison instead of
Hasse_complex<>.

We stress that all of those libraries provide important additional functionality, e.g., creating bound-
ary matrices from point cloud data or support for field coefficients other than Z2, while Phat con-
centrates entirely on the reduction process and is currently limited to Z2 coefficients. However, our
results show a large potential for speed-ups in a computationally important subtask. In particular, our
simple configuration using the twist algorithm and heap column type yields near-optimal speed-ups.
We assume that an adaption of these simple techniques would yield a performance boost in other
libraries with little implementation effort.

6. Conclusion

The experiments clearly show that the choice of reduction algorithms and column data structures
has significant impact on practical efficiency. The generic programming design of Phat was instrumen-
tal to achieving this goal – it made testing different configuration of algorithms and data structures
easy.

Our experimental results point out three significant insights:

1. Algorithms using the clearing optimization significantly improve over the standard algorithm in
all cases.

2. The choice of data structures for column reduction and storage can have a large impact.
3. The combination of computing persistent cohomology and employing the clearing optimization is

highly beneficial for (low-dimensional skeleta of) Rips filtrations. The same advice applies to other
filtrations of spaces with large Betti numbers in the top dimension. However, in this scenario the
two optimizations have to be used in combination in order to achieve their full effect.

We recommend the following usage (as of Phat 1.4.1):

1. Algorithm: twist_reduction (default for the compute_persistence_pairs function and
for the command-line tool). In comparison, the parallel algorithms chunk and
spectral_sequence can speed up the computation, but often not by much. They require
a compiler that supports OpenMP.

2. Column addition strategy: bit_tree_pivot_column (default representation for the
boundary_matrix and the command-line tool). This data structure is the fastest in all in-
stances we tested.

2. Computing persistent cohomology for Rips filtrations. While this can be done for an input bound-
ary matrix using the convenience function compute_persistence_pairs_dualized or
the --dual command-line option, for best performance we highly recommend generating a
coboundary matrix already at the previous stage of the pipeline. The same advice applies to
other data known to have many infinite persistent intervals in the top dimension.

We conclude that recent persistence software can handle large data sets efficiently. Moreover, this
is achieved by a single choice of (sequential) algorithm and data structure. It is also apparent that ex-
isting packages can benefit from the new algorithmic techniques. In particular, the standard algorithm
and the list data structure of columns are not recommended for handling large inputs.

JID:YJSCO AID:1684 /FLA [m1G; v1.175; Prn:5/04/2016; 14:02] P.14 (1-15)

14 U. Bauer et al. / Journal of Symbolic Computation ••• (••••) •••–•••
In future developments of Phat, we plan to implement support for coefficients other than Z2, and
the computation of generating cycles and Smith normal forms. Moreover, we plan to include Phat in
a larger user-friendly package for topological data analysis that also supports the efficient generation
of filtrations from data.

Acknowledgements

Michael Kerber acknowledges support by the Max Planck Center for Visual Computing and Com-
munications (FKZ-01IMC01 and FKZ-01IM10001). Ulrich Bauer, Jan Reininghaus, and Hubert Wagner
acknowledge support by the EU Project TOPOSYS (FP7-ICT-318493-STREP).

References

Adams, H., Tausz, A., Vejdemo-Johansson, M., 2014. javaPlex: a research software package for persistent (co)homology. In: Hong,
H., Yap, C. (Eds.), Mathematical Software – ICMS 2014. In: Lecture Notes in Computer Science, vol. 8592. Springer, Berlin,
Heidelberg, pp. 129–136. http://dx.doi.org/10.1007/978-3-662-44199-2_ 23.

Alexandrescu, A., 2001. Modern C++ Design: Generic Programming and Design Patterns Applied. Addison–Wesley.
Austern, M.H., 1999. Generic Programming and the STL. Addison–Wesley.
Bauer, U., Kerber, M., Reininghaus, J., 2014a. Clear and compress: computing persistent homology in chunks. In: Topological

Methods in Data Analysis and Visualization III. In: Mathematics and Visualization. Springer, pp. 103–117. http://dx.doi.org/
10.1007/978-3-319-04099-8_7.

Bauer, U., Kerber, M., Reininghaus, J., 2014b. Distributed computation of persistent homology. In: 2014 Proceedings of the
Sixteenth Workshop on Algorithm Engineering and Experiments, ALENEX 2014. Portland, Oregon, USA, January 5, 2014,
pp. 31–38.

Boissonnat, J., Dey, T.K., Maria, C., 2013. The compressed annotation matrix: an efficient data structure for computing persis-
tent cohomology. In: Algorithms – ESA 2013 – 21st Annual European Symposium, Proceedings. Sophia Antipolis, France,
September 2–4, 2013, pp. 695–706.

Boissonnat, J., Maria, C., 2012. The simplex tree: an efficient data structure for general simplicial complexes. In: Algorithms –
ESA 2012 – 20th Annual European Symposium, Proceedings. Ljubljana, Slovenia, September 10–12, 2012, pp. 731–742.

Chen, C., Kerber, M., 2011. Persistent homology computation with a twist. In: 27th European Workshop on Computational
Geometry (EuroCG), pp. 197–200. URL http://eurocg11.inf.ethz.ch/abstracts/22.pdf.

Chen, C., Kerber, M., 2013. An output-sensitive algorithm for persistent homology. Comput. Geom. 46 (4), 435–447.
http://dx.doi.org/10.1016/j.comgeo.2012.02.010.

Cohen-Steiner, D., Edelsbrunner, H., Morozov, D., 2006. Vines and vineyards by updating persistence in linear time. In: Proceed-
ings of the Twenty-second Annual Symposium on Computational Geometry. SCG’06. ACM, New York, NY, USA, pp. 119–126.

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C., 2009. Introduction to Algorithms, third edition. The MIT Press.
de Silva, V., Morozov, D., Vejdemo-Johansson, M., 2011. Dualities in persistent (co)homology. Inverse Probl. 27 (12), 124003+.

http://dx.doi.org/10.1088/0266-5611/27/12/124003.
Edelsbrunner, H., Harer, J., 2008. Persistent homology – a survey. In: Surveys on Discrete and Computational Geometry: Twenty

Years Later. In: Contemporary Mathematics, pp. 257–282.
Edelsbrunner, H., Harer, J., 2010. Computational Topology. An Introduction. American Mathematical Society.
Edelsbrunner, H., Letscher, D., Zomorodian, A., 2002. Topological persistence and simplification. Discrete Comput. Geom. 28 (4),

511–533. http://dx.doi.org/10.1007/s00454-002-2885-2.
Fasy, B.T., Kim, J., Lecci, F., Maria, C., 2015. Introduction to the R package TDA. arXiv:1411.1830 [cs.MS].
Forman, R., 1998. Morse theory for cell complexes. Adv. Math. 134 (1), 90–145. http://dx.doi.org/10.1006/aima.1997.1650.
Günther, D., Reininghaus, J., Hotz, I., Wagner, H., 2011. Memory-efficient computation of persistent homology for 3D images

using discrete Morse theory. In: 24th SIBGRAPI Conference on Graphics, Patterns and Images, Sibgrapi 2011. Alagoas, Maceió,
Brazil, August 28–31, 2011, pp. 25–32.

Günther, D., Reininghaus, J., Wagner, H., Hotz, I., 2012. Efficient computation of 3D Morse–Smale complexes and persistent
homology using discrete Morse theory. Vis. Comput. 28 (10), 959–969. http://dx.doi.org/10.1007/s00371-012-0726-8.

Kasten, J., Reininghaus, J., Reich, W., Scheuermann, G., 2014. Toward the extraction of saddle periodic orbits. In: Topological
Methods in Data Analysis and Visualization III. In: Mathematics and Visualization. Springer, pp. 55–69. http://dx.doi.org/
10.1007/978-3-319-04099-8_4.

Lewis, R.H., Zomorodian, A., 2014. Multicore homology via Mayer Vietoris. arXiv:1407.2275 [cs.CG].
Lipsky, D., Skraba, P., Vejdemo-Johansson, M., 2011. A spectral sequence for parallelized persistence. arXiv:1112.1245 [cs.CG].
Maria, C., Boissonnat, J., Glisse, M., Yvinec, M., 2014. The Gudhi library: simplicial complexes and persistent homology. In:

Mathematical Software – ICMS 2014 – 4th International Congress, Proceedings. Seoul, South Korea, August 5–9, 2014,
pp. 167–174.

Milosavljevic, N., Morozov, D., Skraba, P., 2011. Zigzag persistent homology in matrix multiplication time. In: Proceedings of the
27th ACM Symposium on Computational Geometry. Paris, France, June 13–15, 2011, pp. 216–225.

Mischaikow, K., Nanda, V., 2013. Morse theory for filtrations and efficient computation of persistent homology. Discrete Comput.
Geom. 50 (2), 330–353. http://dx.doi.org/10.1007/s00454-013-9529-6.

Morozov, D., 2010. Dionysus. URL http://www.mrzv.org/software/dionysus.

http://dx.doi.org/10.1007/978-3-662-44199-2_23
http://refhub.elsevier.com/S0747-7171(16)30009-8/bib616C6578616E647265736375323030316D6F6465726Es1
http://refhub.elsevier.com/S0747-7171(16)30009-8/bib612D6770732D3939s1
http://dx.doi.org/10.1007/978-3-319-04099-8_7
http://dx.doi.org/10.1007/978-3-319-04099-8_7
http://refhub.elsevier.com/S0747-7171(16)30009-8/bib626B722D6469737472696275746564s1
http://refhub.elsevier.com/S0747-7171(16)30009-8/bib626B722D6469737472696275746564s1
http://refhub.elsevier.com/S0747-7171(16)30009-8/bib626B722D6469737472696275746564s1
http://refhub.elsevier.com/S0747-7171(16)30009-8/bib62646D2D636F6D70726573736564s1
http://refhub.elsevier.com/S0747-7171(16)30009-8/bib62646D2D636F6D70726573736564s1
http://refhub.elsevier.com/S0747-7171(16)30009-8/bib62646D2D636F6D70726573736564s1
http://refhub.elsevier.com/S0747-7171(16)30009-8/bib626D2D73696D706C6578s1
http://refhub.elsevier.com/S0747-7171(16)30009-8/bib626D2D73696D706C6578s1
http://eurocg11.inf.ethz.ch/abstracts/22.pdf
http://dx.doi.org/10.1016/j.comgeo.2012.02.010
http://refhub.elsevier.com/S0747-7171(16)30009-8/bib6373656D2D76696E6573s1
http://refhub.elsevier.com/S0747-7171(16)30009-8/bib6373656D2D76696E6573s1
http://refhub.elsevier.com/S0747-7171(16)30009-8/bib636C727333s1
http://dx.doi.org/10.1088/0266-5611/27/12/124003
http://refhub.elsevier.com/S0747-7171(16)30009-8/bib737572766579s1
http://refhub.elsevier.com/S0747-7171(16)30009-8/bib737572766579s1
http://refhub.elsevier.com/S0747-7171(16)30009-8/bib626F6F6Bs1
http://dx.doi.org/10.1007/s00454-002-2885-2
http://refhub.elsevier.com/S0747-7171(16)30009-8/bib666B6C6D2D696E74726F64756374696F6Es1
http://dx.doi.org/10.1006/aima.1997.1650
http://refhub.elsevier.com/S0747-7171(16)30009-8/bib677268772D6D656D6F7279s1
http://refhub.elsevier.com/S0747-7171(16)30009-8/bib677268772D6D656D6F7279s1
http://refhub.elsevier.com/S0747-7171(16)30009-8/bib677268772D6D656D6F7279s1
http://dx.doi.org/10.1007/s00371-012-0726-8
http://dx.doi.org/10.1007/978-3-319-04099-8_4
http://dx.doi.org/10.1007/978-3-319-04099-8_4
http://refhub.elsevier.com/S0747-7171(16)30009-8/bib6C7A2D6D756C7469636F7265s1
http://refhub.elsevier.com/S0747-7171(16)30009-8/bib6C73762D737065637472616Cs1
http://refhub.elsevier.com/S0747-7171(16)30009-8/bib6D6267792D6775646869s1
http://refhub.elsevier.com/S0747-7171(16)30009-8/bib6D6267792D6775646869s1
http://refhub.elsevier.com/S0747-7171(16)30009-8/bib6D6267792D6775646869s1
http://refhub.elsevier.com/S0747-7171(16)30009-8/bib6D6D732D7A69677A6167s1
http://refhub.elsevier.com/S0747-7171(16)30009-8/bib6D6D732D7A69677A6167s1
http://dx.doi.org/10.1007/s00454-013-9529-6
http://www.mrzv.org/software/dionysus

JID:YJSCO AID:1684 /FLA [m1G; v1.175; Prn:5/04/2016; 14:02] P.15 (1-15)

U. Bauer et al. / Journal of Symbolic Computation ••• (••••) •••–••• 15
Nanda, V., 2013. Perseus: the persistent homology software. Accessed 30/01/15. URL http://www.sas.upenn.edu/~vnanda/perseus.
Wagner, H., Dłotko, P., 2014. Towards topological analysis of high-dimensional feature spaces. Comput. Vis. Image Underst. 121,

21–26. http://dx.doi.org/10.1016/j.cviu.2014.01.005.
Zomorodian, A., Carlsson, G.E., 2005. Computing persistent homology. Discrete Comput. Geom. 33 (2), 249–274. http://dx.doi.org/

10.1007/s00454-004-1146-y.

http://www.sas.upenn.edu/~vnanda/perseus
http://dx.doi.org/10.1016/j.cviu.2014.01.005
http://dx.doi.org/10.1007/s00454-004-1146-y
http://dx.doi.org/10.1007/s00454-004-1146-y

	Phat - Persistent Homology Algorithms Toolbox
	1 Introduction
	1.1 Motivation and related work
	1.2 Contributions
	1.3 Outline

	2 Design
	3 Algorithms
	3.1 Sequential algorithms
	3.2 Parallel algorithms
	3.3 Duality of persistence

	4 Data structures
	4.1 Direct representations
	4.2 Accelerated representations
	4.3 Bit tree

	5 Experiments
	5.1 Rips ﬁltrations
	5.2 Three-dimensional images
	5.3 Dissimilarity measures
	5.4 Comparison with other packages
	5.5 Conﬁguration details

	6 Conclusion
	Acknowledgements
	References

