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Abstract We study a Laplace operator on semidiscrete surfaces that is de-
fined by variation of the Dirichlet energy functional. We show existence and
its relation to the mean curvature normal, which is itself defined via variation
of area. We establish several core properties like linear precision (closely re-
lated to the mean curvature of flat surfaces), and pointwise convergence. It is
interesting to observe how a certain freedom in choosing area measures yields
different kinds of Laplacians: it turns out that using as a measure a simple nu-
merical integration rule yields a Laplacian previously studied as the pointwise
limit of geometrically meaningful Laplacians on polygonal meshes.
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1 Introduction and Preliminaries

1.1 Introduction

The Laplace-Beltrami operator ∆ = −div ◦ grad on smooth surfaces and
Riemannian manifolds is an extremely well investigated differential operator,
which plays an essential role in many fields including applications. A main
strength lies in Riemannian geometry, but it is also relevant to the elementary
differential geometry of surfaces in three-dimensional space, e.g. via the equa-
tion ∆id = −2Hn that relates the Laplacian to the mean curvature and unit
normal vector field. Its intrinsic nature makes it very useful for computational
applications in geometry processing, see e.g. [16], and it has therefore been
extensively discretized. Discrete Laplace operators defined on triangulations
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share characteristics with graph Laplacians, but ideally maintain as many of
the core properties of the original Laplace-Beltrami operator as possible. For
contributions to this topic see e.g. [12,3,2,11,1]. Another important aspect of
discretizations is a suitable convergence behavior, see e.g. [21,18,20].

A powerful tool to derive Laplace operators on more general surfaces arises
from the calculus of variations. The Laplacian of Riemannian geometry can
be seen as gradient of the Dirichlet energy, which leads to the famous “cotan-
gent formula” Laplacian on triangle meshes, see e.g. [8,12]. The variational ap-
proach is also particularly suited to study the mean curvature normal H = Hn,
which has an interpretation as the gradient vector field of the area functional.

In this paper we follow the variational approach. Our aim is to define
meaningful Laplacians on semidiscrete parametric surfaces, which are repre-
sented by a point depending on one continuous and one discrete variable. The
reader is reminded that semidiscrete objects occur in the classical theory of
transformations of surfaces. For a systematic and unified treatment of contin-
uous and semidiscrete surfaces as limits of a discrete master theory we refer
to the textbook [4]. The lowest-dimensional case, i.e., 2-dimensional surfaces,
has been investigated from various viewpoints. The semidiscrete incarnation
of conjugate surfaces is studied by [13] where piecewise-developable surfaces
(including circular and conical semidiscrete surfaces) are considered from the
computational viewpoint. Curvatures, in analogy to polyhedral surfaces, are
the topic of [10]. Asymptotic surfaces and especially K-surfaces are investi-
gated by [17]. The present paper however, is not concerned with any special
class of semidiscrete surfaces.

1.1.1 Outline and results

In Section 2 we define a Laplace operator on semidiscrete surfaces by a vari-
ational principle, namely as gradient of an appropriate Dirichlet energy func-
tional. We show that this gradient exists and provide a closed-form expression
for the semidiscrete Laplacian in Theorem 1. It turns out that there is quite
some freedom in the choice of the particular L2 space which is basic to the
concepts of both gradient and Dirichlet energy. Section 3 investigates the gradi-
ent of the area functional to gain a semidiscrete mean curvature normal, and
establishes the relation ∆id = −2H for the semidiscrete case (Theorem 2),
which in turn implies that linear functions on flat surfaces are in the kernel
of the Laplacian (i.e., the linear precision property). Section 4 discusses fur-
ther properties like locality, symmetry, positive semidefiniteness, and lack of
a maximum principle. The last section deals with pointwise convergence of
the semidiscrete Laplacian towards the Laplace-Beltrami operator on smooth
surfaces (Theorem 3).
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1.2 Variational properties of the Laplacian

The Laplace-Beltrami operator ∆M on a Riemannian manifold M can be
defined via the Dirichlet energy functional

E(u) =
1

2

∫
M
‖∇u‖2 dV, u ∈ C2(M,R).

It is then given as the gradient of the Dirichlet energy,

∆M = ∇E,

which means that for smooth test functions u, and all smooth 1-parameter

variations uξ of u, with the property that
∂uξ
∂ξ

∣∣∣
ξ=0

is compactly supported, we

have
d

dξ
E(uξ)

∣∣∣∣
ξ=0

=
〈
∆Mu,

∂uξ
∂ξ

∣∣∣∣
ξ=0

〉
L2

(with the usual definition 〈f, g〉L2 =
∫
M f(x)g(x)dV (x); see [9, pp. 89–94]).

This relation is basic to the generalization of the Laplace-Beltrami operator to
discrete surfaces and will also be used in the present paper. Recall that for a
surfaceM embedded in R3, the Laplace operator has a remarkable connection
to the mean curvature normal. Applying the Laplacian component-wise to the
identity mapping idM, we get

∆MidM = −2H

(see [7, p. 22]), where the mean curvature normal H = Hn is a unit normal
vector n on M scaled by the corresponding mean curvature H. Observe that
H is independent of the particular choice of n, as the sign of H depends on the
direction of n. This vector field likewise has a variational definition, namely

−2H = ∇area(M), i.e.,
d

dξ
area(pξ(M))

∣∣∣∣
ξ=0

=
〈
− 2H,

∂pξ
∂ξ

∣∣∣∣
ξ=0

〉
L2(M,R3)

for every smooth 1-parameter variation pξ :M→ R3 with p0 = idM (see [7,
p. 7]). Here, area(M) =

∫
M 1dV and 〈f, g〉L2(M,R3) =

∫
M〈f(x), g(x)〉dV (x).

1.3 Semidiscrete surfaces

The semidiscrete surfaces which constitute our object of study are mappings
of the form

x : U → V : (k, t)→ x(k, t), with U ⊂ Z× R open,

and where V is a vector space equipped with a positive definite scalar product
〈·, ·〉V . Throughout this paper we assume that x is at least twice continuously
differentiable in the second argument, and we denote the corresponding set of
mappings by C2

sd(U, V ). Accordingly, the set of semidiscrete functions that are
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merely continuous in the second argument is denoted by Csd(U, V ). With the
help of the canonical hat function ϕ(s) := max{1 − |s|, 0}, we extend x to a
mapping, again called x,

x : Û → V : (s, t) 7→
∑

k: (k,t)∈U

ϕ(s− k)x(k, t), (1)

where the domain Û is constructed as a disjoint union of strips Uk ⊂ R2, each
strip being defined as

Uk :=
⋃

t: (k,t)∈U ∧ (k+1,t)∈U
[k, k + 1]× {t}. (2)

In the non-degenerate case, this procedure converts a sequence of curves into
a piecewise-ruled surface, connecting corresponding points x(k, t) and x(k +
1, t) by straight line segments. For each pair of successive curves x(k, ·) and
x(k + 1, ·) there is a ruled surface strip, which is treated separately from the
others as far as the domain of definition is concerned. This procedure does not
alter the values x(s, t) where s happens to equal an integer k ∈ Z; x(s, t) has
the same value regardless of the question if s is considered as an element of
[k − 1, k] or as an element of [k, k + 1]. We call the procedure of converting a
semidiscrete surface x(k, t) to a piecewise-ruled surface x(s, t) an “extension”,

even if U is not a subset of Û .
In order to make the upcoming formulas shorter and thus better readable,

we set up the following notation. For the derivatives of x(k, t) with respect to
the variable t, we write x′, x′′, and so forth. Finite differences in the discrete
direction are denoted by

δx(s, t) := x(k + 1, t)− x(k, t), for s ∈ [k, k + 1].

Note that in contrast to x itself, the discrete derivative δx does have different
values for s = k ∈ Z, depending on whether s is thought to be contained in
[k − 1, k] or in [k, k + 1]. We resolve this ambiguity by always making it clear
which of the two corresponding surface strips we are considering.

We call a semidiscrete surface regular, if all its surface strips are regular in
the usual sense, i.e., if

{δx(s, t), x′(s, t)}, s ∈ [k, k + 1]

is linearly independent throughout. Moreover, we call (k, t) ∈ U an inner point,
if

{k − 1, k, k + 1} × (t− ε, t+ ε) ⊂ U,
for some ε > 0. Otherwise it is called a boundary point. The set of inner points
of U will be denoted by U inn.

Note that we do not make any assumptions on the embeddedness of the
surfaces we study. Later, when considering a real-valued function “u” on a
semidiscrete surface x, we regard it as defined in U rather than in x(U). Such
a function u therefore formally is a semidiscrete surface in its own right and
we use the same notation as for the surface x. We call u smooth, if it is at least
twice continuously differentiable in the second argument, i.e., if u ∈ C2

sd(U,R).
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Remark 1 It is easy to see that a semidiscrete surface x(s, t) is regular for all
s ∈ [k, k + 1] if x′(k, t), x′(k + 1, t) and δx(k, t) are linearly independent (in
which case the ruled surface strip corresponding to s ∈ [k, k + 1] is a regular
skew ruled surface). In case those vectors are linearly dependent, regularity in
that interval is equivalent to |δx(k, t), x′(k, t)| · |δx(k, t), x′(k + 1, t)| > 0, for
any determinant form |·, ·| on a plane containing these three vectors (the strip
then has a torsal generator whose singular point x(s∗, t) obeys s∗ 6∈ [k, k + 1];
cf. [14, §5.1.1]).

2 Variational definition of a semidiscrete Laplace operator

This section aims at a meaningful definition of a Laplace operator on semidis-
crete surfaces. Mimicking the smooth case, we define a semidiscrete Laplacian
as gradient of an appropriate Dirichlet energy functional. For this purpose we
first discuss area measures.

2.1 Integration and Laplacian on semidiscrete surfaces

Consider a semidiscrete surface x with open domain U ⊂ Z×R, which has been
extended to a piecewise-ruled surface defined in the domain Û , as described
above (cf. Equation (1)).

A reasonable definition of its area obviously is given by the sum of the
areas of individual ruled surface strips, which in terms of the matrix I of the
first fundamental form is expressed as

area(x) =

∫∫
Û

√
det I(s, t) dsdt, with I =

(
‖δx‖2 〈δx, x′〉
〈δx, x′〉 ‖x′‖2

)
(3)

(see [6, p. 98]). Note that, in order to resolve the ambiguity in the definition

of δx, the double integral over Û has to be interpreted as the sum of double
integrals over the individual strips Uk stated in Equation (2).

It makes sense to generalize this definition by replacing Lebesgue measure
dsdt by other measures. We start with a Borel measure µ0 supported on the
unit interval [0, 1], whose zeroth and first moments have the following values:

m0 =

∫
[0,1]

1 dµ0(s) = 1 and m1 =

∫
[0,1]

s dµ0(s) =
1

2
. (4)

That is, we require integration of polynomials up to degree 1 to coincide with
integration w.r.t. Lebesgue measure. A stronger property is symmetry of the
measure, meaning that∫

[0,1]

f(s) dµ0(s) =

∫
[0,1]

f(1− s) dµ0(s), for all f ∈ L1([0, 1], µ0). (5)

Together with m0 = 1 symmetry implies m1 = 1/2. This symmetry property
is not required except in Theorem 3, where it is explicitly mentioned.
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We will see that these assumptions are crucial for some important proper-
ties of the Laplacian, and also for convergence. We actually construct an entire
family of semidiscrete Laplace operators, depending on the type of integration
we employ. Note that in particular the measure µ0 might be a numerical inte-
gration rule, like the midpoint rule or the trapezoidal rule. As it turns out, a
particular choice of measure leads to the semidiscrete Laplacian introduced in
[5] as a pointwise limit of the discrete construction of Alexa and Wardetzky
[1]. We discuss this connection in §2.2.

Now, by translation, µ0 acts as a measure on each interval [k, k + 1], and
we denote the sum of measures on the disjoint union of intervals [k, k+1] by µ.
With the Lebesgue measure λ on the reals, we consider the product measure
µ⊗ λ on the disjoint union of strips [k, k+ 1]×R. It is precisely this measure

which we use for integration in the domain Û :

Definition 1 Consider a semidiscrete surface x : U → V , extended to a
piecewise-ruled surface x : Û → V . We use its first fundamental form I and
the measure µ⊗λ on Û to define the surface integral of a function u : Û → R:∫

x

u dA :=

∫
Û

u(s, t)
√

det I(s, t) d(µ⊗ λ)(s, t).

The surface area is given by areaµ(x) :=
∫
x

1 dA.

Again, by the integral over Û we mean the sum of integrals over the indi-
vidual strips Uk given by Equation (2). Note that for nonnegative functions
u, the integral always exists and

∫
x
udA ∈ [0,∞], whereas for general u,∫

x
u dA =

∫
x

max(u, 0) dA −
∫
x

max(−u, 0) dA is only defined if at least one
of the involved expressions is finite.

Example 1 This definition in particular applies to a semidiscrete function u :
U → R, which has been extended to a piecewise-linear function u : Û → R by
linear interpolation:

u(s, t) =
∑

k: (k,t)∈U

ϕ(s− k)u(k, t).

If u vanishes at the boundary of U , we can write its surface integral as∫
x

u dA =
∑
k∈Z

∫
π2(Uk)

u(k, t) a(k, t) dλ(t),

where π2 : R × R → R : (s, t) 7→ t, and the semidiscrete function a is defined
by

a(k, t) :=

∫
[k−1,k]t [k,k+1]

ϕ(s− k)
√

det I(s, t) dµ(s).

Here, the integral over [k− 1, k]t [k, k+ 1] represents the sum of the integrals
over the intervals [k − 1, k] and [k, k + 1]. This formula follows from com-
puting the left hand side by the iterated integral

∑
k

∫
π2(Uk)

( ∫
[k,k+1]

u
√

det I
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dµ(s)
)
dλ(t) and using u(s, t) =

∑
j ϕ(s − j)u(j, t) to express the interior in-

tegral as u(k, t)
∫

[k,k+1]
ϕ(s − k)

√
det I dµ(s) + u(k + 1, t)

∫
[k,k+1]

ϕ(s − k −
1)
√

det I dµ(s). An index shift yields the formula given above.

Definition 2 Given a semidiscrete surface x with domain U ⊂ Z × R, we
define L2 inner products for semidiscrete real-valued (resp. V -valued) functions
u, v with the same domain by letting

〈u, v〉L2(x) :=

∫
x

uv dA, resp. 〈u, v〉L2(x,V ) :=

∫
x

〈u, v〉V dA.

The integrals in the previous formulas mean that the semidiscrete func-
tions u, v are multiplied to create a semidiscrete product function (u · v)(k, t)
(resp. 〈u, v〉V (k, t)), which for the purpose of integration undergoes linear in-
terpolation. The inner products are, for instance, well defined for semidiscrete
functions that are continuous in the second argument and have finite L2 norm.

For the Dirichlet energy of a semidiscrete function we use the following
definition:

Definition 3 Let x be a regular semidiscrete surface defined on U and let
u, v : U → R be smooth semidiscrete functions, considered as functions on x.
Then we use the extended functions u(s, t), v(s, t) over the extended surface
x(s, t) to define the Dirichlet energy Eµ(u) and the corresponding symmetric
bilinear form Eµ(u, v) via

Eµ(u) :=
1

2

∫
x

‖∇u‖2 dA, Eµ(u, v) :=
1

2

∫
x

〈∇u,∇v〉dA.

As to the gradients of real-valued functions u(s, t), v(s, t) on a parametric

surface x(s, t), recall that 〈∇u,∇v〉 =
(
∂u/∂s
∂u/∂t

)
T · I−1 ·

(
∂v/∂s
∂v/∂t

)
, where I(s, t) is

the matrix of the first fundamental form. This leads to the following explicit
expression for the Dirichlet energy:

Eµ(u) =
1

2

∫
Û

det I
−1/2
(
‖x′‖2(δu)2 − 2〈δx, x′〉(δu)(u′) + ‖δx‖2(u′)2

)
d(µ⊗ λ).

Observe that Eµ(u) essentially is the ordinary Dirichlet energy of the piece-
wise-smooth function u(s, t) over the piecewise-smooth surface x(s, t).

It is tempting to employ L2 notation for the definition of the Dirichlet
energy. We will not do that, since the integrand is not generated by extending
a semidiscrete function, and therefore does not fit Definition 2.

Next, we generalize the notion of the gradient of an energy functional to the
semidiscrete case. For that we consider “admissible” variations of semidiscrete
functions:

Definition 4 An admissible variation xξ(k, t) of a smooth semidiscrete map-
ping x : U → V is a V -valued function of arguments (ξ, k, t) ∈ (−ε, ε) × U ,
which depends smoothly on ξ and t, coincides with x(k, t) for ξ = 0, and such
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that xξ(k, t) does not depend on ξ outside a compact subset K of U inn. More-
over, we call a subset B ⊂ U associated with the variation xξ, if it is open and
bounded, with K ⊂ B ⊂ B ⊂ U and (k, t) ∈ K =⇒ (k − 1, t), (k + 1, t) ∈ B.
For the derivative of xξ with respect to ξ we use the notation

ẋ(k, t) :=
∂

∂ξ
xξ(k, t)

∣∣∣∣
ξ=0

.

This definition in particular applies to admissible variations uξ(k, t) of
smooth semidiscrete functions u : U → R. In what follows we discuss the
variation of energy, and the variation of surface area, even if these quantities
are not finite. As admissible variations only take effect on compact parts of the
domain U , the corresponding change in energy or surface area can be defined
in a meaningful way.

Definition 5 Let x : U → V be a regular semidiscrete surface and let E
be a functional on C2

sd(U,R), with the property that there exists an operator
∇E : C2

sd(U,R) → Csd(U inn,R), such that for every u ∈ C2
sd(U,R) and all

admissible 1-parameter variations uξ of u with associated subset B ⊂ U , we
have

d

dξ
E(uξ|B)

∣∣∣∣
ξ=0

= 〈∇E(u), u̇〉L2(x) .

Then ∇E is called the gradient of E. In particular, we define the semidiscrete
Laplace operator ∆sd on x as the gradient of the Dirichlet energy functional
Eµ, i.e.,

∆sd := ∇Eµ.

Note that this definition is independent of the particular choice of the
bounded open subset B ⊂ U associated with a variation uξ of u.

Theorem 1 If x : U → V is a regular semidiscrete surface, then the semidis-
crete Laplacian ∆sdu exists for all smooth semidiscrete functions u defined in
the same domain:

(∆sdu) (k, t) =
1

a(k, t)

(
δb(k, t) + c′(k, t)

)
, (6)

with a as in Example 1, and with semidiscrete functions b, c defined by

b(k, ·) :=

∫
[k−1,k]

det I
−1/2
(
〈δx, x′〉u′ − ‖x′‖2δu

)
dµ,

c(k, ·) :=

∫
[k−1,k]t [k,k+1]

det I
−1/2ϕ(s− k)

(
〈δx, x′〉δu− ‖δx‖2u′

)
dµ.

Proof Let uξ be an admissible variation of u with derivative u̇ and let B ⊂ U be
associated with uξ. We compute the derivative of the Dirichlet energy by using
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the Leibniz rule (which applies because all occurring functions are smooth in
the variables ξ and t, and u̇ has compact support):

d

dξ
Eµ(uξ|B)

∣∣∣∣
ξ=0

=

=

∫
Û

det I
−1/2
(
‖x′‖2δuδu̇− 〈δx, x′〉

(
δuu̇′ + u′δu̇

)
+ ‖δx‖2u′u̇′

)
d(µ⊗ λ)

=

∫
Û

(
− b(s, t)δu̇(s, t)− c(s, t)u̇′(s, t)

)
d(µ⊗ λ)(s, t), where

b := det I
−1/2(〈δx, x′〉u′ − ‖x′‖2δu), c := det I

−1/2(〈δx, x′〉δu− ‖δx‖2u′). (7)

Next we apply integration by parts w.r.t. t to the second summand:

d

dξ
Eµ(uξ|B)

∣∣∣∣
ξ=0

=

∫
Û

(
− b(s, t)δu̇(s, t) + c′(s, t)u̇(s, t)

)
d(µ⊗ λ)(s, t)

=
∑
k∈Z

∫
π2(Uk)

∫
s∈[k,k+1]

b(s, t)
(
u̇(k, t)− u̇(k + 1, t)

)
+

+ c′(s, t)
(
ϕ(s− k)u̇(k, t) + ϕ(s− k − 1)u̇(k + 1, t)

)
dµ(s)dλ(t).

Observe that the boundary terms vanish, since the support of u̇ is contained
in U inn. Finally, an index shift yields

d

dξ
Eµ(uξ|B)

∣∣∣∣
ξ=0

=
∑
k∈Z

∫
π2(Uk)

(
δb(k, t) + c′(k, t)

)
u̇(k, t)dλ(t) = 〈∆sdu, u̇〉L2(x),

with b, c, and ∆sdu as stated above (cf. also Example 1). ut

2.2 Example: Semidiscrete Laplacians arising as limits of discrete ones

As demonstrated in [5], the discrete Laplace operator L constructed by Alexa
and Wardetzky [1] for functions defined on the vertices of a polygonal mesh
gives rise to a Laplace operator on semidiscrete surfaces via pointwise limits.
We may discretize a regular semidiscrete surface x : U → R3 and a smooth
function u : U → R near a point of interest (k, t) ∈ U inn by letting

xεij := x(k + i, t+ εj), uε(xεij) := u(k + i, t+ εj).

This defines the vertices xεij of a quad mesh with regular combinatorics, and
function values on these vertices. The discrete Lapace operator on that mesh
is denoted by Lε, and we let

(∆limu)(k, t) := lim
ε→0

(Lεuε)
∣∣∣
0,0
.

Existence and properties of this limit were investigated in [5], in particular
independence of the limit from the still remaining degrees of freedom in the
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construction of L. There is a remarkable connection between our semidiscrete
Laplacian ∆sd and the semidiscrete Laplacian ∆lim which arises by pointwise
limits. In fact, if the measure µ0 used to construct ∆sd is taken as the midpoint
rule for numerical integration (i.e.,

∫
[0,1]

f(s) dµ0(s) = f( 1
2 )), then they are

equal:
µ0({ 1

2}) = 1 =⇒ ∆sdu = ∆limu, ∀ u ∈ C2
sd(U,R).

This claim is easily verified by comparing the formulae for ∆limu given by [5,
Corollary 1] with the explicit expressions stated in Theorem 1 of the present
paper: If µ0({ 1

2}) = 1,

a(k, t) =

∫
[k−1,k]t [k,k+1]

ϕ(s− k)‖δx(s, t)× x′(s, t)‖dµ(s) =

=
1

4

(
‖(x1 − x)× (x′1 + x′)‖+ ‖(x1̄ − x)× (x′1̄ + x′)‖

)
=
A1 +A1̄

4
,

where we adopt the notation from [5, Corollary 1]. In particular, x1(k, t) =
x(k + 1, t) and x1̄(k, t) = x(k − 1, t). Likewise, we get

b(k, t) =
1

2A1

(
〈x1 − x, x′1 + x′〉(u′1 + u′)− ‖x′1 + x′‖2(u1 − u)

)
, and

c(k, t) =
1

2A1

(
‖x1 − x‖2(u′1 + u′)− 〈x1 − x, x′1 + x′〉(u1 − u)

)
= − α1

2A1
.

By inserting these functions into Equation (6) and comparing the resulting
expression with the formula stated in [5, Corollary 1], we see that ∆sdu =
∆limu.

3 Semidiscrete mean curvature normals

Before we analyze further properties of the semidiscrete Laplace operator, we
discuss its connection to the mean curvature normal. Recall from the intro-
ductory section the relations between the Laplacian and the mean curvature
normal, which hold for smooth surfaces embedded in R3: On the one hand,
∆MidM = −2H, on the other hand the mean curvature normal itself has the
variational definition −2H = ∇area(M). Here we consider the semidiscrete
version of these objects and the relations between them. Our notation is not
entirely the same as in §1.2, because we deal with parametric surfaces.

3.1 Variational properties of mean curvature

Definition 6 Let F be a functional on C2
sd(U, V ) and let x : U → V be a

semidiscrete surface with the property that there exists a function ∇F (x) ∈
Csd(U inn, V ), such that for all admissible 1-parameter variations xξ of x with
associated subset B ⊂ U , we have

d

dξ
F (xξ|B)

∣∣∣∣
ξ=0

= 〈∇F (x), ẋ〉L2(x,V ).
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Then ∇F (x) is called the gradient of F at x. In particular, the semidiscrete
mean curvature normal Hsd of a regular semidiscrete surface x is defined as

Hsd := −1

2
∇ areaµ(x).

Theorem 2 For regular semidiscrete surfaces x, the mean curvature normal
vector field exists and can be computed by applying the Laplacian component-
wise to the identity mapping on x:

∆sdx = −2Hsd.

Proof Let xξ(k, t) be an admissible variation of x. Each semidiscrete surface
xξ(k, t) is extended to a piecewise-ruled surface xξ(s, t), having first funda-
mental form Iξ(s, t) (cf. Equation (3)). By definition, xξ(k, t) is independent
of ξ outside a compact subset K of U inn. Thus, by a standard argument, the
piecewise-ruled surfaces xξ(s, t) are regular for all ξ in some interval (−h, h),
because

√
det Iξ, i.e., the area spanned by the partial derivatives of xξ, is pos-

itive in a compact set {0} ×K ′ ⊂ R× Û , thus positive in a neighbourhood of
this set, and consequently positive in a product set (−h, h)×K ′.

Thus, we may compute

∂

∂ξ

√
det Iξ =

1

2
√

det Iξ

∂

∂ξ

[
‖δxξ‖2‖x′ξ‖2 − 〈δxξ, x′ξ〉2

]
.

For ξ = 0, this expression is simplified by computing the individual derivatives
∂
∂ξ‖δxξ‖

2 = 2〈δx, δẋ〉, ∂
∂ξ‖x

′
ξ‖2 = 2〈x′, ẋ′〉, and ∂

∂ξ 〈δxξ, x
′
ξ〉2 = 2(〈x′, δẋ〉 +

〈δx, ẋ′〉)〈δx, x′〉. We get

d

dξ
areaµ(xξ|B)

∣∣∣∣
ξ=0

=

∫
Û

(
−〈b(s, t), δẋ(s, t)〉−〈c(s, t), ẋ′(s, t)〉

)
d(µ⊗λ)(s, t),

where the functions b(s, t) and c(s, t) are the same as in Equation (7), and the
previous formula is the same as the expression for the derivative of the Dirichlet
energy in the proof of Thm. 1, only with x instead of u, and scalar products
of V -valued functions instead of products of real-valued ones. It follows that
the gradient of areaµ evaluated at x indeed equals ∆sdx. ut

3.2 Mean curvature of extrinsically flat surfaces

We show that the mean curvature normal of a regular semidiscrete surface x
vanishes, if that surface is embedded in a 2-dimensional plane. Here, embed-
dedness means injectivity of the extended surface x(s, t). Besides constituting
a sanity check on our definitions, this fact is of importance later when we show
the “linear precision” property of the semidiscrete Laplacian.

Lemma 1 If the regular semidiscrete surface x : U → V is embedded in a
2-dimensional plane, then its mean curvature normal Hsd vanishes.
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Proof The general idea of the proof is to show that ‖Hsd‖L2(x,V ) = 0 by
constructing a variation whose derivative equals Hsd. This can be done in the
following way. Choose a smooth function v : U → R with compact support
contained in U inn. Then

xξ(k, t) := x(k, t) + ξv(k, t)2Hsd(k, t)

is a well-defined 1-parameter variation of x with velocity ẋ = v2Hsd.
Now, let Π denote the plane containing the surface x and assume without

loss of generality that 0 ∈ Π, soΠ is a linear subspace and therefore δx, x′ ∈ Π.
It follows from Thm. 1 and Thm. 2 that Hsd(k, t) ∈ Π, and consequently,
xξ(k, t) ∈ Π. Since dimΠ = 2, we can express the above-mentioned area in
terms of an appropriate determinant form |·, ·|:√

det Iξ(s, t) =
∣∣δxξ(s, t), x′ξ(s, t)∣∣ = (1− s+ k)

∣∣δxξ(k, t), x′ξ(k, t)∣∣+

+ (s− k)
∣∣δxξ(k, t), x′ξ(k + 1, t)

∣∣, for s ∈ [k, k + 1], t fixed.

By Equation (4), integrating
√

det Iξ over [k, k+ 1] w.r.t. dµ(s) is the same as
integrating w.r.t. Lebesgue measure. Thus, areaµ(xξ|B) equals the unsigned
Euclidean area. Since the variation xξ leaves the boundary of the surface un-
changed, areaµ(xξ|B) does not depend on ξ, and we get

‖vHsd‖2L2(x,V ) =
〈
Hsd, v

2Hsd

〉
L2(x,V )

= −1

2
〈∇ area(x), ẋ〉L2(x,V )

= −1

2

d

dξ
area(xξ|B)

∣∣∣∣
ξ=0

= 0.

We conclude that vHsd vanishes for all v, i.e., Hsd = const. = 0. ut

4 Properties of the semidiscrete Laplacian

The classical Laplace operator enjoys several properties like linear precision,
symmetry, positive semidefiniteness, and an associated maximum principle
for harmonic functions. It is natural to ask if they carry over to the purely
discrete or semidiscrete cases (for triangle meshes, these core properties turn
out to be incompatible for Laplacians whose definition involves the 1-ring
neighbourhood of individual vertices; see [19]). We start by investigating the
kernel of the Laplacian. Surely it contains the constant functions. As to linear
functions, we have the following result:

Lemma 2 For a regular semidiscrete surface x and its corresponding Lapla-
cian ∆sd and mean curvature normal field Hsd, the following statements are
equivalent:

(a) All functions u(k, t) = L(x(k, t)) with L : V → R linear are contained
in the kernel of ∆sd.
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(b) x is harmonic, i.e., ∆sdx = const. = 0.
(c) x is a minimal surface, i.e., Hsd = const. = 0.

Proof The equivalence of (b) and (c) is Theorem 2. Since the coordinate com-
ponents of x are linear functions of x, (a) implies (b). Conversely, any linear
function is a linear combination of coordinate functions and a constant, so (b)
implies (a). ut

Corollary 1 The semidiscrete Laplacian enjoys the linear precision property,
i.e., for a regular semidiscrete surface embedded in a 2-dimensional plane, all
linear functions are contained in the kernel of the Laplacian.

Proof Combine Lemmas 1 and 2. ut

We show that our semidiscrete Laplacian is symmetric and positive semi-
definite in the L2 sense, in a way analogous to the well known Laplace-Beltrami
operator (see, e.g. [15]). This follows directly from the variational definition of
the Laplacian.

Lemma 3 The semidiscrete Laplace operator ∆sd is symmetric and positive
semidefinite. More precisely, for semidiscrete functions u and v, with compact
support contained in U inn, we have

〈∆sdu, v〉L2(x) = 〈u,∆sdv〉L2(x) and 〈∆sdu, u〉L2(x) = 2Eµ(u) ≥ 0.

Proof We use the quadratic form Eµ corresponding to the Dirichlet energy
(see Definition 3) and compute 〈∆sdu, v〉L2(x) = 〈∇Eµ(u), v〉L2(x) = d

dξEµ(u+

ξv)|ξ=0 = d
dξ (Eµ(u, u)+2ξEµ(u, v)+ξ2Eµ(v, v))|ξ=0 = 2Eµ(u, v), where we have

used the relations given in Definition 5. This implies symmetry and, for u = v,
semidefiniteness. ut

Unfortunately, the maximum principle is not valid for the semidiscrete
Laplacian, even for functions on very simple surfaces. This is in contrast to
the smooth case, where the maximum principle holds in general; and it is
also in contrast to the cotan-Laplacian on triangle meshes (likewise found as
gradient of the Dirichlet energy), where a maximum principle holds e.g. if all
angles are acute. A counterexample is as follows.

Example 2 Here we construct a semidiscrete harmonic function u with a max-
imum at the inner point (0, 0) of the semidiscrete surface x(k, t) := (k, t).
For this purpose we first derive a more explicit expression for the Laplacian
∆sdu of a semidiscrete function u on x. We extend x to x(s, t) = (s, t) and
u to the piecewise-linear function u(s, t) =

∑
(k,t)∈Z×R ϕ(s − k)u(k, t). Then
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I = diag(1, 1), so by the assumptions (4), we get

a(k, t) =

∫
[k−1,k]t [k,k+1]

ϕ(s− k)dµ(s) = 1,

b(k, t) = −
∫

[k−1,k]

δu(s, t)dµ(s) = −δu(k − 1, t) = u(k, t)− u(k − 1, t),

c(k, t) = −
∫

[k−1,k]t [k,k+1]

ϕ(s− k)u′(s, t)dµ(s) =

= −2m2u
′(k, t)− ( 1

2 −m2)
(
u′(k − 1, t) + u′(k + 1, t)

)
,

where m2 =
∫

[0,1]
s2 dµ0 is the second moment of the measure µ0. Hence, in

this situation, the Laplacian of u is given by

∆sdu(k, t) = 2u(k, t)− u(k − 1, t)− u(k + 1, t)−
− 2m2u

′′(k, t)− ( 1
2 −m2)

(
u′′(k − 1, t) + u′′(k + 1, t)

)
.

The harmonicity condition ∆sdu = 0 thus becomes a system of linear ODEs
for the functions t 7→ u(k, t), where k runs through the integers. Observe that
the assumptions (4) imply 1

4 ≤ m2 ≤ 1
2 . The maximum principle obviously

holds if m2 = 1
2 , which applies e.g. to the trapezoidal rule. Otherwise, for

m2 <
1
2 , we can construct a harmonic function u on x with a maximum at (0, 0)

as follows. Choosing u(0, t) := −t2 and assuming symmetry u(±1, t) := φ(t),
we find φ(t) easily as φ(t) = 1−t2+γ1 cos(( 1

2−m2)−1/2t)+γ2 sin(( 1
2−m2)−1/2t).

An appropriate choice of constants, e.g. γ1 = −2, γ2 = 0, yields a function
u(k, t), which undoubtedly has a local maximum in u(0, 0) = 0. We have thus
created a locally defined counterexample to the maximum principle. It can be
turned into a globally defined example by constructing u(±2, t), u(±3, t), . . .
such that overall ∆sdu = 0: one has to iteratively solve linear ODEs.

5 Pointwise convergence / consistency

In this section we show that the semidiscrete Laplace operator converges point-
wise to its smooth counterpart, as the semidiscrete surface converges to a
smooth one. In the Finite Elements literature this kind of convergence is called
consistency, while convergence would be reserved for the situation where the
solutions of equations involving the semidiscrete Laplacian converge to solu-
tions of equations which involve the continuous Laplacian.

More precisely, the situation in the following theorem is as follows. We fix a
point p on a regular surfaceM, which is assumed to have a local parametriza-
tion f . Without loss of generality, p = f(0, 0). Next, we consider the semidis-
crete surface

xε : (k, t) 7→ f(εk, t), ε > 0,

which obviously contains the point p = xε(0, 0) and is inscribed in the surface
M. Then we analyze the semidiscrete Laplace operator associated with xε and
its action on functions uε, and let ε→ 0.
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Theorem 3 Consider a smooth regular surface M with parametrization f
and a real-valued function u(s, t) which represents a function defined on the
surface M. Let p = f(0, 0).

Semidiscretize these objects by defining a semidiscrete surface xε(k, t) :=
f(εk, t) and a semidiscrete function uε(k, t) := u(εk, t). Then the correspond-
ing semidiscrete Laplace operator ∆ε

sd converges to the Laplace-Beltrami oper-
ator ∆M defined on M:

f, u ∈ C2 =⇒ (∆ε
sduε)(0, 0) = (∆Mu)(p) + o(1), as ε→ 0.

In case the measure µ0 is symmetric in the sense of Equ. (5), convergence is
improved:

f, u ∈ C3 =⇒ (∆ε
sduε)(0, 0) = (∆Mu)(p) + o(ε), as ε→ 0,

f, u ∈ C4 =⇒ (∆ε
sduε)(0, 0) = (∆Mu)(p) +O(ε2), as ε→ 0.

Theorem 2 immediately implies a convergence statement concerning mean
curvature:

Corollary 2 In the situation of Theorem 3, the semidiscrete mean curvature
normal Hε

sd on xε converges pointwise to its smooth counterpart (with the rate
of convergence depending on the smoothness of the parametrization).

Proof of Theorem 3 We first set up some notation. For differentiation with
respect to s and t we use the notation ∂1 and ∂2, respectively. The coefficients of
the first fundamental form are denoted by gij := 〈∂if, ∂jf〉. Their determinant
is denoted by det I = g11g22−g2

12. We also use the symbols ρijk := 〈∂if, ∂jkf〉.
• Step 1: Overview of the proof. In local coordinates, the Laplacian is ex-

pressed as

∆Mu =
1

acont
(∂1b

cont + ∂2c
cont), where

acont =
√

det I, bcont =
g12∂2u− g22∂1u√

det I
, ccont =

g12∂1u− g11∂2u√
det I

(see e.g. [15, p. 18]). On the other hand, the semidiscrete Laplacian ∆ε
sd as-

sociated with xε is computed, using notation aε, bε, cε analogous to Thm. 1,
as

∆ε
sduε(0, 0) =

1

aε

(
δbε + c′ε

)∣∣∣
(0,0)

.

We compute Taylor polynomials around (0, 0) for xε(±1, 0) = f(±ε, 0) and
uε(±1, 0) = u(±ε, 0), and insert them into this formula. Long computations
yield

aε(0, 0)

ε
≈ acont(0, 0),

δbε(0, 0)

ε
≈ ∂1b

cont(0, 0),
c′ε(0, 0)

ε
≈ ∂2c

cont(0, 0),

where the ≈ symbol means equality up to O(ε2) in the C4 case, resp. o(ε)
in the C3 case, resp. o(1) in the C2 case. Having obtained these convergence
rates, the proof is complete. It remains to perform the above-mentioned long
computations.
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• Step 2: Taylor expansion of xε, uε and their derivatives. Note that

xε(s, 0) =
∑
k

ϕ(s− k)xε(k, 0) =

{
(1 + s)f(0, 0)− sf(−ε, 0), if s ∈ [−1, 0],

(1− s)f(0, 0) + sf(ε, 0), if s ∈ [0, 1].

(8)
The expression for uε in terms of u(±ε, 0) is analogous. The Taylor polynomials
of f(±ε, 0) and its derivatives around ε = 0 are in the C4 case given by

f(±ε, 0) = f(0, 0)± ε∂1f(0, 0) + ε2

2 ∂11f(0, 0)± ε3

6 ∂111f(0, 0) +O(ε4),

∂2f(±ε, 0) = ∂2f(0, 0)± ε∂12f(0, 0) + ε2

2 ∂112f(0, 0) +O(ε3).

∂22f(±ε, 0) = ∂22f(0, 0)± ε∂122f(0, 0) +O(ε2).

The remainder terms O(εj) in the individual formulas have to be replaced
by o(εj−1) in the C3 case. In the C2 case, the terms containing third order
partial derivatives of f have to be replaced by o(εj−2). There are analogous
expressions for u(±ε, 0) and its derivatives.

• Step 3: Taylor expansion of the area element. For sufficiently small ε > 0,
we consider the first fundamental form Iε associated with the piecewise-ruled
surface xε and look at the quantity

α(ε, s) =
√

det Iε(s, 0), s ∈ [−1, 1].

Note that, for s ∈ [0, 1], det Iε(s, 0) is the Gram determinant of vectors

δxε(s, 0) = f(ε, 0)− f(0, 0), x′ε(s, 0) = (1− s)∂2f(0, 0) + s∂2f(ε, 0).

In the C4 case, a simple computation and taking square roots by means of the
binomial series yields

det Iε(s, 0) = ε2
(
α1 + ε(α2 + sα3) + ε2α4 +O(ε3)

)
, as ε→ 0,

α1 = det I
∣∣
(0,0)

, α2 = (g22ρ111 − g12ρ211)
∣∣
(0,0)

, α3 = 2(g11ρ212 − g12ρ112)
∣∣
(0,0)

,

α(ε, s) = |ε|
(
α

1/2
1 +

ε

2

α2 + sα3

α
1/2
1

+
ε2

8

4α1α4 − (α2 + sα3)2

α
3/2
1

+O(ε3)
)
.

In the C3 case, the remainder term is o(ε2), while in the C2 case, the terms
involving ε2 have to be replaced by o(ε). For s ∈ [−1, 0], the situation is
analogous.

• Step 4: The relation between aε and acont. Our aim is to give a proof of
1
εaε(0, 0) ≈ acont(0, 0), where the meaning of “≈” is equality up to an er-
ror term depending on the differentiability class of the objects involved. The
relation α(ε,−s) = α(−ε, s) yields

aε(0, 0) =

∫
[−1,0]

(1 + s)α(ε, s) dµ(s) +

∫
[0,1]

(1− s)α(ε, s) dµ(s) =

=

∫
[0,1]

sα(−ε, 1− s) + (1− s)α(ε, s) dµ(s) =

= |ε|
∫

[0,1]

(
α

1/2
1 +

ε

2
(1− 2s)α2α

−1/2
1 +O(ε2)

)
dµ(s)
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in the C3 and C4 cases, and the same formula with remainder term o(ε) in the
C2 case. Now Equation (4) yields

∫
[0,1]

(1−2s)dµ(s) = 0, so the result follows.

• Step 5: Relation between bε and bcont. With computations similar to those
of the previous Step 4, it is not difficult to see that

δbε(0, 0) = bε(1, 0)− bε(0, 0) =

∫
[0,1]

(β(−ε, 1− s)
α(−ε, 1− s)

+
β(ε, s)

α(ε, s)

)
dµ0(s), (9)

where β(ε, s) := 〈δxε, x′ε〉u′ε − ‖x′ε‖2δuε
∣∣
(0,0)

is expressed as

β(ε, s) =
〈
f(ε, 0)− f(0, 0), (1− s)∂2f(0, 0) + s∂2f(ε, 0)

〉
·

·
(
(1− s)∂2u(0, 0) + s∂2u(ε, 0)

)
−

−
∥∥(1− s)∂2f(0, 0) + s∂2f(ε, 0)

∥∥2(
u(ε, 0)− u(0, 0)

)
, for s ∈ [0, 1].

Note that β(ε,−s) = −β(−ε, s) and α(ε,−s) = α(−ε, s) for s ∈ [0, 1]. Assum-
ing symmetry of the measure µ0, this simplifies to

δbε(0, 0) =

∫
[0,1]

(β(−ε, s)
α(−ε, s)

+
β(ε, s)

α(ε, s)

)
dµ0(s).

Inserting Taylor polynomials yields the expansion (for the C3 case)

β(ε, s) = εβ1 + ε2(β2 + sβ3) + ε3β4 + o(ε3), where

β1 = g12∂2u− g22∂1u
∣∣
0,0
, β2 =

1

2

(
ρ211∂2u− g22∂11u

)∣∣
0,0
,

β3 = (ρ112∂2u− 2ρ212∂1u+ g12∂12u)
∣∣
0,0
.

This leads to

β(−ε, s)
α(−ε, s)

+
β(ε, s)

α(ε, s)
=
ε3
(
2(β2 + sβ3)α

1/2
1 − β1(α2 + sα3)α

−1/2
1

)
+ o(ε4)

ε2α1 + o(ε3)
.

Integration with respect to dµ(s) and substituting the definitions of αj , βj
eventually yields

δbε(0, 0)

ε
=

2β2 + β3

α
1/2
1

−
β1(α2 + 1

2α3)

α
3/2
1

+ o(ε) = ∂1b
cont(0, 0) + o(ε).

In the C4 case the remainder term is O(ε2), whereas in the C2 case, where
symmetry of the measure is not required, the integral on the right hand side of
Equation (9) does not simplify as shown above, and we only get a remainder
term of o(1).
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• Step 6: Computing the derivative of c(k, t). The following explicit formula,
which is found by differentiating the definition of c(k, t), is needed later:

dc(k, t)

dt
=

∫
[k−1,k]t [k,k+1]

ϕ(s− k)
∂

∂t

(
〈δx, x′〉δu− ‖δx‖2u′

det I1/2

)
dµ(s)

=

∫
[k−1,k]t [k,k+1]

ϕ(s− k)

(
c∗(s, t)

det I1/2
− c∗∗(s, t)

det I3/2

)
dµ(s), where

c∗ :=
(
〈δx′, x′〉+ 〈δx, x′′〉

)
δu+ 〈δx, x′〉δu′ − 2〈δx, δx′〉u′ − ‖δx‖2u′′,

c∗∗ := (〈δx, x′〉δu− ‖δx‖2u′)
[
〈x′, x′′〉‖δx‖2 −

− (〈δx′, x′〉+ 〈δx, x′′〉)〈δx, x′〉+ 〈δx, δx′〉‖x′‖2
]
.

• Step 7: Relation between cε and ccont. We use the notation of Step 6 to
introduce the symbols γ∗(ε, s), γ∗∗(ε, s), which arise from the functions c∗,
c∗∗, resp., by substituting xε for x and uε for u, and letting t = 0. Note that
γ∗(ε,−s) = γ∗(−ε, s) and the same for γ∗∗, for s ∈ [0, 1]. With a computation
similar to Step 4, it is easy to see that c′ε(0, 0) is expressed as∫
[0,1]

s
γ∗(−ε, 1− s)
α(−ε, 1− s)

+(1−s)γ
∗(ε, s)

α(ε, s)
−sγ

∗∗(−ε, 1− s)
α(−ε, 1− s)3

−(1−s)γ
∗∗(ε, s)

α(ε, s)3
dµ0(s).

Assuming symmetry of the measure µ0, this expression simplifies to∫
[0,1]

(1−s)
(
γ∗(−ε, s)
α(−ε, s)

+
γ∗(ε, s)

α(ε, s)

)
−(1−s)

(
γ∗∗(−ε, s)
α(−ε, s)3

+
γ∗∗(ε, s)

α(ε, s)3

)
dµ0(s).

In the same manner as before we get the expansions

γ∗(ε, s) = ε2γ∗1 + ε3(γ∗2 + sγ∗3 ) + o(ε3),

γ∗∗(ε, s) = ε4γ∗∗1 + ε5(γ∗∗2 + sγ∗∗3 ) + o(ε5),

where

γ∗1 =
(
(ρ122 + ρ212)∂1u+ g12∂12u− 2ρ112∂2u− g11∂22u

)∣∣
(0,0)

,

γ∗∗1 =
(
g12∂1u− g11∂2u

)(
ρ112g22 + ρ222g11 − (ρ212 + ρ122)g12

)∣∣
(0,0)

.

This leads to

γ∗(−ε, s)
α(−ε, s)

+
γ∗(ε, s)

α(ε, s)
=

1

ε2α1 + o(ε3)

(
ε32γ∗1α

1/2
1 + o(ε4)

)
= ε

2γ∗1

α
1/2
1

+ o(ε2),

γ∗∗(−ε, s)
α(−ε, s)3

+
γ∗∗(ε, s)

α(ε, s)3
=

1

ε6α3
1 + o(ε7)

(
ε72γ∗∗1 α

3/2
1 + o(ε8)

)
= ε

2γ∗∗1

α
3/2
1

+ o(ε2).

Using property (4) of the measure µ0 for integration, and substituting the
definitions of α1, γ

∗
1 , γ∗∗1 , one eventually gets

c′ε(0, 0)

ε
=

γ∗1

α
1/2
1

− γ∗∗1

α
3/2
1

+ o(ε) = ∂2c
cont(0, 0) + o(ε).
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This result applies to the C3 case. In the C4 case, one more term in the Taylor
polynomials becomes available, and the remainder term in the formula above
becomes O(ε2) instead of o(ε). In the C2 case, where symmetry of the measure
µ0 is not required, we only get o(1) (the details are omitted). The estimates
of steps 4, 5, and 7 together conclude the proof. ut
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