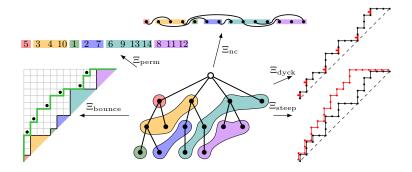
Parabolic Cataland	Bijections	Zeta	Discussion
0000	0000000	0000	0

Steep-bounce zeta map in parabolic Cataland

Wenjie Fang, Institute of Discrete Mathematics, TU Graz Joint work with Cesar Ceballos and Henri Mühle

1 July 2019, FPSAC 2019, University of Ljulbjana

Parabolic Cataland	Bijections	Zeta	Discussion
0000	0000000	0000	0
-			



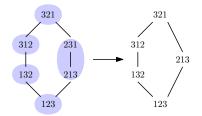
Parabolic Cataland

Parabolic Cataland	Bijections	Zeta	Discussion
0 000	0000000	0000	0
Catalan object	s in action		

 \mathfrak{S}_n as a Coxeter group generated by $s_i = (i, i+1)$

For $w \in \mathfrak{S}_n$, $\ell(w) = \min$. length of factorization of w into s_i 's.

Weak order : w covered by w' iff $w' = ws_i$ and $\ell(w') = \ell(w) + 1$



Sylvester class: permutations with the same binary search tree Representants: 231-avoiding permutations (A Catalan family!) Restricted to 231-avoiding permutations = Tamari lattice.

Parabolic Cataland	Bijections	Zeta	Discussion
0000	0000000	0000	0
Generalization	to parabolic quoti	ent of \mathfrak{S}_n	

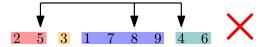
Let $\alpha = (\alpha_1, \ldots, \alpha_k)$ be a composition of n.

Parabolic quotient : $\mathfrak{S}_n^{\alpha} = \mathfrak{S}_n / (\mathfrak{S}_{\alpha_1} \times \cdots \times \mathfrak{S}_{\alpha_k}).$

$$i$$
 1 2 3 4 5 6 7 8 9
 $\sigma(i)$ 1 5 3 2 4 8 9 6 7

Increasing order in each block (here, $\alpha = (2, 1, 4, 2)$)

Also a notion of $(\alpha,231)\text{-avoiding permutations}$

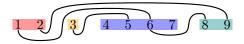


 $\mathfrak{S}^{lpha}_n(231)$: set of (lpha,231)-avoiding permutations

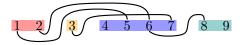
Weak order restricted to $\mathfrak{S}_n^{\alpha}(231) = \text{Parabolic Tamari lattice (Mühle and Williams 2018+)}$

Parabolic Cataland	Bijections	Zeta	Discussion
0000	0000000	0000	0
Parabolic Catalan	objects		

Parabolic non-crossing $\alpha\text{-partition}$

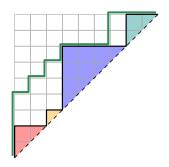


Parabolic non-nesting α -partition



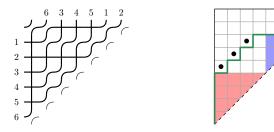
All in (somehow complicated) bijections! (Mühle and Williams, 2018+)

Bounce pairs



Parabolic Cataland	Bijections	Zeta	Discussion
0000	0000000	0000	0
Detour to pipe dre	ams		

Hopf algebra on pipe dreams (Bergeron, Ceballos et Pilaud, 2018+).



Proposition (Bergeron, Ceballos and Pilaud, 2018+)

Pipe dreams of size n whose permutation decomposes into identity permutations are in bijection with bounce pairs of order n.

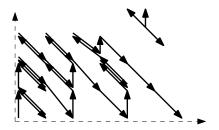
Come to Cesar's talk on Wednesday!

Parabolic Cataland	Bijections	Zeta	Discussion
0000	00 00000	0000	0
Marked paths	and steep pairs		

Observation by Bergeron, Ceballos and Pilaud and F. and Mühle: Graded dimensions of a Hopf algebra on said pipe dreams:

 $1, 1, 3, 12, 57, 301, 1707, 10191, 63244, 404503, \dots$ (OEIS A151498)

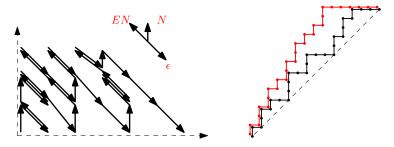
- = Walks in the quadrant: $\{(1,0),(1,-1),(-1,1)\},$ ending on x-axis
- = Number of parabolic Catalan objects of order n (summed over all α).



Considered in (Bousquet-Mélou and Mishna, 2010) Counted in (Mishna and Rechnitzer, 2009)

Parabolic Cataland	Bijections	Zeta	Discussion
0000	0000000	0000	0
Lattice paths a	and steep pairs		

Steep pairs : 2 nested Dyck paths, the one above has no EE except at the end



Bijection:

- Path below: projection on y-axis
- $\bullet~\mbox{Path}$ above: $(0,1) \to N$, $(-1,1) \to EN$, $(1,-1) \to \epsilon,$ padding of E

Parabolic Cataland	Bijections	Zeta	Discussion
0000	0000000	0000	0

Steep-Bounce conjecture

Conjecture (Bergeron, Ceballos and Pilaud 2018+, Conjecture 2.2.8)

The following two sets are of the same size:

- bounce pairs of order n with k blocks;
- steep pairs of order n with k east steps E on y = n.

The cases k = 1, 2, n - 1, n already proved

Bijection?

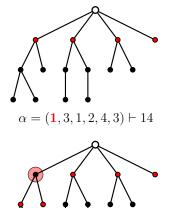
Parabolic Cataland	Bijections	Zeta	Discussion
0000	0000000	0000	0
Left-aligned c	olored trees		

- - T : plane tree with n non-root nodes;
 - $\alpha = (\alpha_1, \ldots, \alpha_k)$: composition of n

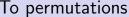
Active nodes : not yet colored, but parent is colored or is the root.

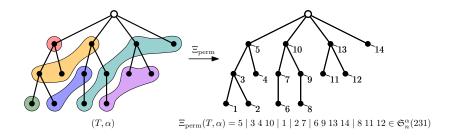
Coloring algorithm : For *i* from 1 to k,

- If there are less than α_i active nodes, then fail;
- Otherwise, color the first α_i from left to right with color *i*.



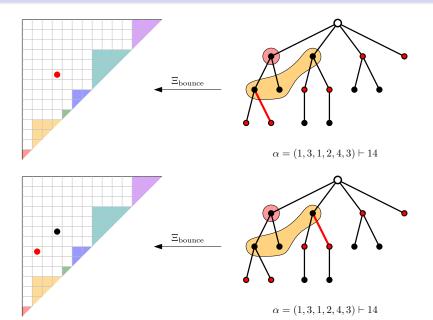
Parabolic Cataland	Bijections	Zeta	Discussion
0000	0000000	0000	0
– .			





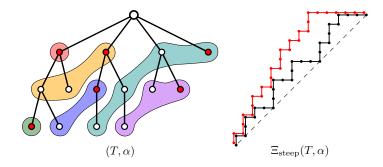
Parabolic Cataland	Bijections	Zeta	Discussion
0000	0000000	0000	0

To bounce pairs



Parabolic Cataland	Bijections	Zeta	Discussion
0000	00000000	0000	0

To steep pairs



- Lower path: depth-first search from right to left
- Upper path: red node $\rightarrow N$, white node $\rightarrow EN$

Parabolic Cataland	Bijections	Zeta	Discussion	
0000	0000000	0000	0	
Steep-Bounce theorem				

Theorem (Ceballos, F., Mühle 2018+)

There is a natural bijection Γ between the following two sets:

- bounce pairs of order n with k blocks;
- steep pairs of order n with k each steps E on y = n.

So we know how (hard it is) to count them.

But there is more!

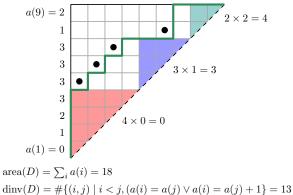
- Parabolic Tamari lattice: from Coxeter structure
- ν-Tamari lattice (Préville-Ratelle and Viennot 2014): from Dyck paths

Theorem (Ceballos, F., Mühle 2018+)

The parabolic Tamari lattice indexed by α is isomorphic to the ν -Tamari lattice with $\nu = N^{\alpha_1} E^{\alpha_1} \cdots N^{\alpha_k} E^{\alpha_k}$.

Parabolic Cataland	Bijections	Zeta	Discussion
0000	0000000	0 000	0
		•	

Detour to q, t-Catalan combinatorics



bounce $(D) = \sum_{i} (i-1)\alpha_i = 7$

Parabolic Cataland	Bijections	Zeta	Discussion
0000	0000000	0000	0
Zeta map from	diagonal harmonics		

Theorem (Haglund and Haiman, see Haglund 2008)

By summing over all Dyck paths of order n, we have

$$\sum_{D} q^{\operatorname{area}(D)} t^{\operatorname{bounce}(D)} = \sum_{D} q^{\operatorname{dinv}(D)} t^{\operatorname{area}(D)}.$$

Each comes from a combinatorial description of the Hilbert series of the alternating component of the space of diagonal harmonics.

Theorem (Haglund 2008)

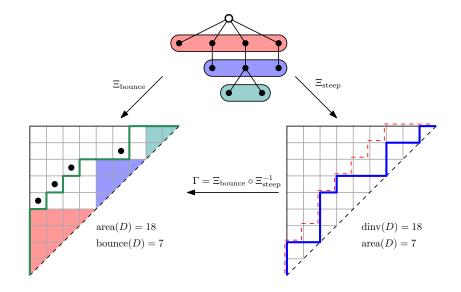
There is a bijection ζ on Dyck paths that transfers the pairs of statistics

 $(\text{dinv}, \text{area}) \rightarrow (\text{area}, \text{bounce}).$

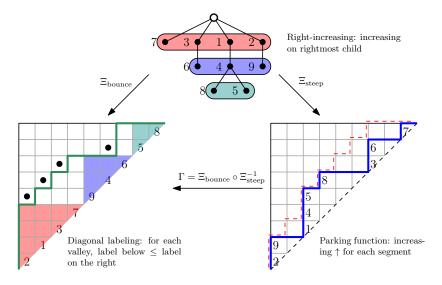
Originally from (Andrews, Krattenthaler, Orsina and Papi, 2001) in the context of Borel subalgebras of sl(n).

Parabolic Cataland	Bijections	Zeta	Discussion
0000	0000000	0000	0

Our zeta map



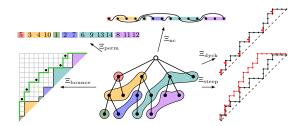
Our zeta map, labeled version



A generalization of the labeled zeta map (Haglund and Loehr, 2005).

Parabolic Cataland	Bijections	Zeta	Discussion
0000	0000000	0000	•
Possible directions			

- Many questions in enumeration (but possibly very difficult)
- Interesting special cases (See Henri's poster!)
- Other types?
- Implication in spaces of diagonal harmonics?
- etc.



Thank you for listening!