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Summary
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Catalan objects in action

Sn as a Coxeter group generated by si = (i, i+ 1)

For w ∈ Sn, ℓ(w) = min. length of factorization of w into si’s.

Weak order : w covered by w′ iff w′ = wsi and ℓ(w′) = ℓ(w) + 1
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Sylvester class: permutations with the same binary search tree

Representants: 231-avoiding permutations (A Catalan family!)

Restricted to 231-avoiding permutations = Tamari lattice.
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Generalization to parabolic quotient of Sn

Let α = (α1, . . . , αk) be a composition of n.

Parabolic quotient : Sα
n
= Sn/(Sα1

× · · · ×Sαk
).
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Increasing order in each block (here, α = (2, 1, 4, 2))

Also a notion of (α, 231)-avoiding permutations
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S
α
n
(231) : set of (α, 231)-avoiding permutations

Weak order restricted to S
α
n
(231) = Parabolic Tamari lattice (Mühle and

Williams 2018+)
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Parabolic Catalan objects

(α, 231)-avoiding permutations
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Parabolic non-crossing α-partition
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Parabolic non-nesting α-partition
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Bounce pairs

All in (somehow complicated) bijections! (Mühle and Williams, 2018+)
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Detour to pipe dreams

Hopf algebra on pipe dreams (Bergeron, Ceballos et Pilaud, 2018+).
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Proposition (Bergeron, Ceballos and Pilaud, 2018+)

Pipe dreams of size n whose permutation decomposes into identity

permutations are in bijection with bounce pairs of order n.

Come to Cesar’s talk on Wednesday!
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Marked paths and steep pairs

Observation by Bergeron, Ceballos and Pilaud and F. and Mühle:

Graded dimensions of a Hopf algebra on said pipe dreams:

1, 1, 3, 12, 57, 301, 1707, 10191, 63244, 404503, . . . (OEIS A151498)

= Walks in the quadrant: {(1, 0), (1,−1), (−1, 1)}, ending on x-axis

= Number of parabolic Catalan objects of order n (summed over all α).

Considered in (Bousquet-Mélou and Mishna, 2010)

Counted in (Mishna and Rechnitzer, 2009)
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Lattice paths and steep pairs

Steep pairs : 2 nested Dyck paths, the one above has no EE except at
the end

EN N

ǫ

Bijection:

Path below: projection on y-axis

Path above: (0, 1) → N , (−1, 1) → EN , (1,−1) → ǫ, padding of E
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Steep-Bounce conjecture

Conjecture (Bergeron, Ceballos and Pilaud 2018+, Conjecture 2.2.8)

The following two sets are of the same size:

bounce pairs of order n with k blocks;

steep pairs of order n with k east steps E on y = n.

The cases k = 1, 2, n− 1, n already proved

Bijection?
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Left-aligned colored trees

T : plane tree with n non-root nodes;
α = (α1, . . . , αk) : composition of n

Active nodes : not yet colored, but parent is colored or is the root.

Coloring algorithm : For i from 1 to k,

If there are less than αi active nodes, then fail;
Otherwise, color the first αi from left to right with color i.

α = (1, 3, 1, 2, 4, 3) ⊢ 14
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To permutations

(T, α)
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Ξperm(T, α) = 5 | 3 4 10 | 1 | 2 7 | 6 9 13 14 | 8 11 12 ∈ S
α

n
(231)

Ξperm



Parabolic Cataland Bijections Zeta Discussion

To bounce pairs

α = (1, 3, 1, 2, 4, 3) ⊢ 14

Ξbounce

α = (1, 3, 1, 2, 4, 3) ⊢ 14

Ξbounce
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To steep pairs

Ξsteep(T, α)(T, α)

Lower path: depth-first search from right to left

Upper path: red node → N , white node → EN
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Steep-Bounce theorem

Theorem (Ceballos, F., Mühle 2018+)

There is a natural bijection Γ between the following two sets:

bounce pairs of order n with k blocks;

steep pairs of order n with k each steps E on y = n.

So we know how (hard it is) to count them.

But there is more!

Parabolic Tamari lattice: from Coxeter structure

ν-Tamari lattice (Préville-Ratelle and Viennot 2014): from Dyck
paths

Theorem (Ceballos, F., Mühle 2018+)

The parabolic Tamari lattice indexed by α is isomorphic to the ν-Tamari

lattice with ν = Nα1Eα1 · · ·NαkEαk .
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Detour to q, t-Catalan combinatorics

a(1) = 0
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a(9) = 2

area(D) =
∑

i
a(i) = 18

dinv(D) = #{(i, j) | i < j, (a(i) = a(j) ∨ a(i) = a(j) + 1} = 13

bounce(D) =
∑

i
(i− 1)αi = 7

4× 0 = 0

3× 1 = 3

2× 2 = 4
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Zeta map from diagonal harmonics

Theorem (Haglund and Haiman, see Haglund 2008)

By summing over all Dyck paths of order n, we have

∑

D

qarea(D)tbounce(D) =
∑

D

qdinv(D)tarea(D).

Each comes from a combinatorial description of the Hilbert series of the
alternating component of the space of diagonal harmonics.

Theorem (Haglund 2008)

There is a bijection ζ on Dyck paths that transfers the pairs of statistics

(dinv, area) → (area, bounce).

Originally from (Andrews, Krattenthaler, Orsina and Papi, 2001) in the
context of Borel subalgebras of sl(n).
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Our zeta map

area(D) = 18

bounce(D) = 7

dinv(D) = 18

area(D) = 7

Γ = Ξbounce ◦ Ξ
−1
steep

ΞsteepΞbounce
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Our zeta map, labeled version

Γ = Ξbounce ◦ Ξ
−1
steep

ΞsteepΞbounce
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Parking function: increas-

ing ↑ for each segment

Diagonal labeling: for each

valley, label below ≤ label

on the right

Right-increasing: increasing

on rightmost child

A generalization of the labeled zeta map (Haglund and Loehr, 2005).
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Possible directions

Many questions in enumeration (but possibly very difficult)

Interesting special cases (See Henri’s poster!)

Other types?

Implication in spaces of diagonal harmonics?

etc.

5 3 4 10 1 2 7 6 9 13 14 8 11 12

Ξperm

Ξnc

Ξbounce

Ξdyck

Ξsteep

Thank you for listening!
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