Combinatorics of the zeta map on rational Dyck paths

Cesar Ceballos joint with Tom Denton and Christopher Hanusa

XX Coloquio Latinoamericano de Álgebra, Lima Dec 8, 2014

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Plan of the talk

1. Simultaneous core partitions & rational Dyck paths

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- 2. Skew length
- 3. Conjugation
- 4. Zeta map

1. Simultaneous core partitions & rational Dyck paths

Simultaneous core partitions

Definition

Let $\lambda \vdash n$ be a partition of n

- ▶ say λ is an *a*-core if it has no cell with hook length *a*
- ▶ say λ is an (a, b)-core partition if it has no cell with hook length a or b

Example A (5, 8)-core:

14	9	6	4	2	1
11	6	3	1		
9	4	1		-	
7	2				
6	1				
4		-			
3					
2					
1					

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Anderson 2002)

The number of (a, b)-cores is finite if and only if a and b are relatively prime, in which case they are counted by the rational Catalan number

$$C_{a,b} = rac{1}{a+b} inom{a+b}{a}$$

Simultaneous core partitions: Anderson's bijection

Beautiful bijection: (a, b)-cores \longleftrightarrow Dyck paths in an $a \times b$ rectangle

14	9	6	4	2	1
11	6	3	1		
9	4	1			
7	2		-		
6	1				
4					
3					
2					
1					

27	22	17	12	7	2	-3	-8
19	14	9	4	-1	8	-11	-16
11	6	1	-4	-9	-14	-19	-24
3	-2	1	-12	-17	-22	-27	-32
-5	-10	-15	-20	-25	-30	-35	-40

Simultaneous core partitions: Anderson's bijection

Beautiful bijection: (a, b)-cores \leftrightarrow Dyck paths in an $a \times b$ rectangle

14	9	6	4	2	1
11	6	3	1		
9	4	1			
7	2				
6	1				
4		-			
3					
2					
1					

Rational q-Catalan

Define the q-analog of the (a, b)-Catalan number as

$$\mathcal{C}_{a,b}(q) = rac{1}{[a+b]} egin{bmatrix} a+b\ a \end{bmatrix}$$

obtained by replacing every number r by its q-analog

$$[r]=1+q+\cdots+q^{r-1}$$

Rational q-Catalan

Define the q-analog of the (a, b)-Catalan number as

$$C_{a,b}(q) = rac{1}{[a+b]} iggl[egin{array}{c} a+b\ a \end{array} iggr]$$

obtained by replacing every number r by its q-analog

$$[r]=1+q+\cdots+q^{r-1}$$

Proposition

 $C_{a,b}(q)$ is a polynomial if and only if a and b are relatively prime.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Rational q-Catalan and q, t-Catalan

Conjecture (Armstrong-Hanusa-Jones 2014)

$$\mathcal{C}_{\mathsf{a},b}(q) = \sum q^{\mathsf{sl}(\kappa) + \mathsf{area}(\kappa)}$$

Conjecture (Armstrong-Hanusa-Jones 2014)

$$\sum q^{\operatorname{area}(\kappa)} t^{\operatorname{sl}'(\kappa)} = \sum q^{\operatorname{sl}'(\kappa)} t^{\operatorname{area}(\kappa)}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

sums over all (a, b)-cores

a-rows: largest hooks of each residue mod *a b*-boundary: boxes with boxes with hooks less than *b* skew length: number of boxes in both the *a*-rows and *b*-boundary

sl = 4+3+2+1 = 10

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

Theorem (C.–Denton–Hanusa)

Skew length is independent of the ordering of a and b.

3. Conjugation

<□ > < @ > < E > < E > E のQ @

Conjugation on cores

conjugation: reflect along a diagonal

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Conjugation on Dick paths

conjugation: cyclic rotation to get a path below the diagonal, rotate 180° degrees

Conjugation

Theorem (C.–Denton–Hanusa)

Both conjugations coincide under Anderson's bijection

14				
9				
6				
4				
2	-			
1				

Conjugation

Theorem (C.–Denton–Hanusa)

Conjugations preserves skew length

The shaded partitions determine two amazing maps called zeta and eta

statistics for q, t-enumeration of classical Dyck paths were famously difficult to find, but were nearly simultaneously discovered by Haglund (area and bounce) and Haiman (dinv and area). The zeta map sends

 $\begin{array}{rrr} {\sf dinv} & \to & {\sf area} \\ {\sf area} & \to & {\sf bounce} \end{array}$

Drew Armstrong: generalized this zeta map to (a, b)-Dyck paths

4. Zeta map (and eta)

<□ > < @ > < E > < E > E のQ @

Zeta and eta on cores

Armstrong (zeta):

The bounded partitions of zeta and eta are the shaded partitions before

eta := zeta of the conjugate

Zeta and eta on cores

Armstrong (zeta):

The bounded partitions of zeta and eta are the shaded partitions before

eta := zeta of the conjugate

Note: the map $\zeta(\pi) \to \eta(\pi)$ is an area preserving map

Exercise for the party tonight: The shaded partitions fit above the main diagonal!

Conjecture (Armstrong)

The zeta map is a bijection on (a, b)-Dyck paths

Armstrong–Loehr–Warrington, ... :

Zeta: move diagonal up and record north and east steps as crossed

NENENENEEEE

Armstrong–Loehr–Warrington, ... :

Zeta: move diagonal up and record north and east steps as crossed

NENENENEEEE

Armstrong–Loehr–Warrington, ... :

Zeta: move diagonal up and record north and east steps as crossed

NENENENEEEE

Armstrong–Loehr–Warrington, ... :

Zeta: move diagonal up and record north and east steps as crossed

NENENENEEEE

Armstrong–Loehr–Warrington, ... :

Zeta: move diagonal up and record north and east steps as crossed

NENENENEEEE

Armstrong–Loehr–Warrington, ... :

Zeta: move diagonal up and record north and east steps as crossed

NENENENEEEE

Armstrong–Loehr–Warrington, ... :

Zeta: move diagonal up and record north and east steps as crossed

NENENENEEEE

Armstrong–Loehr–Warrington, ... :

Zeta: move diagonal up and record north and east steps as crossed

NENENENEEEE

Armstrong–Loehr–Warrington, ... :

Zeta: move diagonal up and record north and east steps as crossed

NENENENEEEE

Armstrong–Loehr–Warrington, ... :

Zeta: move diagonal up and record north and east steps as crossed

NENENENEEEE

Armstrong–Loehr–Warrington, . . . :

Zeta: move diagonal up and record north and east steps as crossed

NENENENEEEE

Armstrong–Loehr–Warrington, . . . :

Zeta: move diagonal up and record north and east steps as crossed

NENENENEEEE

Armstrong–Loehr–Warrington, . . . :

Zeta: move diagonal up and record north and east steps as crossed

NENENENEEEE

Armstrong–Loehr–Warrington, ... :

Zeta: move diagonal up and record north and east steps as crossed

NENENENEEEE

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Armstrong–Loehr–Warrington, ... :

Zeta: move diagonal up and record north and east steps as crossed

NENENENEEEE

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Armstrong–Loehr–Warrington, . . . :

Zeta: move diagonal up and record north and east steps as crossed

NENENENEEEE

Eta: move diagonal down and record south and weast steps as crossed

Zeta and eta via lasers

Theorem (C.–Denton-Hanusa)

Description of zeta and eta in terms of a laser filling

$$\lambda = (4, 3, 2, 1, 0)$$

 $\mu = (3, 2, 2, 1, 1, 1, 0, 0)$

Conjecture (Armstrong)

The zeta map is a bijection on (a, b)-Dyck paths

Conjecture (Armstrong)

The zeta map is a bijection on (a, b)-Dyck paths

Lets construct the inverse!! (knowing zeta and eta)

Zeta inverse knowing eta

(N,N,N,E,N,E,E,E,N,E,E,E,E)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Zeta inverse knowing eta

Theorem (C.–Denton–Hanusa)

- $\triangleright \gamma$ is a cycle permutation.
- The east steps of π correspond to the descents of γ .

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Zeta inverse knowing eta

Theorem (C.–Denton–Hanusa)

- γ is a cycle permutation.
- The east steps of π correspond to the descents of γ .

missing: combinatorial description of the area preserving involution

Theorem (C.–Denton-Hanusa)

Area preserving involution: reverse the path

Corollary (C.-Denton-Hanusa)

Inverse: descents of γ are the east steps of the inverse

 $\gamma = (1,3,5,9,6,10,15,11,16,12,7,13,17,14,8,4,2)$

(N,N,N,E,N,N,E,N,E,E,N,N,E,E,E,E,E)

Corollary (C.-Denton-Hanusa)

Inverse: descents of γ are the east steps of the inverse

Different from the known inverse description using "bounce paths"!

Theorem (C.–Denton–Hanusa)

Co-skew length is equal to the dinv statistic

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Thank you!

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>