Combinatorics of the zeta map on rational Dyck paths

Cesar Ceballos
joint with Tom Denton and Christopher Hanusa

XX Coloquio Latinoamericano de Álgebra, Lima
Dec 8, 2014

Plan of the talk

1. Simultaneous core partitions \& rational Dyck paths
2. Skew length
3. Conjugation
4. Zeta map
5. Simultaneous core partitions \& rational Dyck paths

Simultaneous core partitions

Definition

Let $\lambda \vdash n$ be a partition of n

- say λ is an a-core if it has no cell with hook length a
- say λ is an (a, b)-core partition if it has no cell with hook length a or b

Example

A (5, 8)-core:

14	9	6	4	2	1
11	6	3	1		
9	4	1			
7	2				
6	1				
4					
3					
2					
1					

Simultaneous core partitions

Theorem (Anderson 2002)
The number of (a, b)-cores is finite if and only if a and b are relatively prime, in which case they are counted by the rational Catalan number

$$
C_{a, b}=\frac{1}{a+b}\binom{a+b}{a}
$$

Simultaneous core partitions: Anderson's bijection

Beautiful bijection: (a, b)-cores \longleftrightarrow Dyck paths in an $a \times b$ rectangle

14	9	6	4	2	1
11	6	3	1		
9	4	1			
7	2				
6	1				
4					
3					
2					
1					

27	22	17	12	7	2	-3	-8
19	14	9	4	-1	-	-11	-16
11	6	1	-4	-9	-14	-19	-24
3	-2	-7	-12	-17	-22	-27	-32
-5	-10	-15	-20	-25	-30	-35	-40

Simultaneous core partitions: Anderson's bijection

Beautiful bijection: (a, b)-cores \longleftrightarrow Dyck paths in an $a \times b$ rectangle

14	9	6	4	2	1
11	6	3	1		
9	4	1			
7	2				
6	1				
4					
3					
2					
1					

				7	2		
	14	9	4				
11	6	1					
3							

Rational q-Catalan

Define the q-analog of the (a, b)-Catalan number as

$$
C_{a, b}(q)=\frac{1}{[a+b]}\left[\begin{array}{c}
a+b \\
a
\end{array}\right]
$$

obtained by replacing every number r by its q-analog

$$
[r]=1+q+\cdots+q^{r-1}
$$

Rational q-Catalan

Define the q-analog of the (a, b)-Catalan number as

$$
C_{a, b}(q)=\frac{1}{[a+b]}\left[\begin{array}{c}
a+b \\
a
\end{array}\right]
$$

obtained by replacing every number r by its q-analog

$$
[r]=1+q+\cdots+q^{r-1}
$$

Proposition
$C_{a, b}(q)$ is a polynomial if and only if a and b are relatively prime.

Rational q-Catalan and q, t-Catalan

Conjecture (Armstrong-Hanusa-Jones 2014)

$$
C_{a, b}(q)=\sum q^{\mathrm{sl}(\kappa)+\operatorname{area}(\kappa)}
$$

Conjecture (Armstrong-Hanusa-Jones 2014)

$$
\sum q^{\operatorname{area}(\kappa)} t^{\mathrm{s}^{\prime}(\kappa)}=\sum q^{\mathrm{sl}^{\prime}(\kappa)} t^{\operatorname{area}(\kappa)}
$$

sums over all (a, b)-cores
2. Skew length

Skew length

a-rows: largest hooks of each residue mod a b-boundary: boxes with boxes with hooks less than b skew length: number of boxes in both the a-rows and b-boundary

$$
s l=4+3+2+1=10
$$

Skew length

(5,8)-core

(8,5)-core

Skew length

Skew length

Theorem (C.-Denton-Hanusa)
Skew length is independent of the ordering of a and b.

3. Conjugation

Conjugation on cores

conjugation: reflect along a diagonal

Conjugation on Dick paths

conjugation: cyclic rotation to get a path below the diagonal, rotate 180° degrees

				7	2		
	14	9	4				
11	6	1					
3							

					2		
	14	9	4				
	6	1					

Conjugation

Theorem (C.-Denton-Hanusa)
Both conjugations coincide under Anderson's bijection

Conjugation

Theorem (C.-Denton-Hanusa)
Conjugations preserves skew length

$$
s l=4+3+2+1=10
$$

(5,8)-core

$$
s l=6+3+1=10
$$

The shaded partitions determine two amazing maps called zeta and eta

statistics for q, t-enumeration of classical Dyck paths were famously difficult to find, but were nearly simultaneously discovered by Haglund (area and bounce) and Haiman (dinv and area). The zeta map sends

$$
\begin{array}{llc}
\text { dinv } & \rightarrow & \text { area } \\
\text { area } & \rightarrow & \text { bounce }
\end{array}
$$

Drew Armstrong: generalized this zeta map to (a, b)-Dyck paths
4. Zeta map (and eta)

Zeta and eta on cores

Armstrong (zeta):
The bounded partitions of zeta and eta are the shaded partitions before

eta := zeta of the conjugate

Zeta and eta on cores

Armstrong (zeta):
The bounded partitions of zeta and eta are the shaded partitions before

$$
\text { eta }:=\text { zeta of the conjugate }
$$

Note: the map $\zeta(\pi) \rightarrow \eta(\pi)$ is an area preserving map

Zeta and eta

Exercise for the party tonight: The shaded partitions fit above the main diagonal!

Conjecture (Armstrong)
The zeta map is a bijection on (a, b)-Dyck paths

Zeta and eta on Dyck paths

Armstrong-Loehr-Warrington, ... :
Zeta: move diagonal up and record north and east steps as crossed

NENENENENEEEE

Zeta and eta on Dyck paths

Armstrong-Loehr-Warrington, ... :
Zeta: move diagonal up and record north and east steps as crossed

NEneneneneeme

Zeta and eta on Dyck paths

Armstrong-Loehr-Warrington, ... :
Zeta: move diagonal up and record north and east steps as crossed

Zeta and eta on Dyck paths

Armstrong-Loehr-Warrington, ... :
Zeta: move diagonal up and record north and east steps as crossed

Zeta and eta on Dyck paths

Armstrong-Loehr-Warrington, ... :
Zeta: move diagonal up and record north and east steps as crossed

Zeta and eta on Dyck paths

Armstrong-Loehr-Warrington, ... :
Zeta: move diagonal up and record north and east steps as crossed

Zeta and eta on Dyck paths

Armstrong-Loehr-Warrington, ... :
Zeta: move diagonal up and record north and east steps as crossed

Zeta and eta on Dyck paths

Armstrong-Loehr-Warrington, ... :
Zeta: move diagonal up and record north and east steps as crossed

Zeta and eta on Dyck paths

Armstrong-Loehr-Warrington, ... :
Zeta: move diagonal up and record north and east steps as crossed

Zeta and eta on Dyck paths

Armstrong-Loehr-Warrington, ... :
Zeta: move diagonal up and record north and east steps as crossed

Zeta and eta on Dyck paths

Armstrong-Loehr-Warrington, ... :
Zeta: move diagonal up and record north and east steps as crossed

Zeta and eta on Dyck paths

Armstrong-Loehr-Warrington, ... :
Zeta: move diagonal up and record north and east steps as crossed

Zeta and eta on Dyck paths

Armstrong-Loehr-Warrington, ... :
Zeta: move diagonal up and record north and east steps as crossed

NENENENENEEEE

Zeta and eta on Dyck paths

Armstrong-Loehr-Warrington, ... :
Zeta: move diagonal up and record north and east steps as crossed

NENENENENEEEE

Zeta and eta on Dyck paths

Armstrong-Loehr-Warrington, ... :
Zeta: move diagonal up and record north and east steps as crossed

NENENENENEEEE

Zeta and eta on Dyck paths

Armstrong-Loehr-Warrington, ... :
Zeta: move diagonal up and record north and east steps as crossed

NENENENENEEEE

Eta: move diagonal down and record south and weast steps as crossed

Zeta and eta via lasers

Theorem (C.-Denton-Hanusa)
Description of zeta and eta in terms of a laser filling

$$
\begin{aligned}
\lambda & =(4,3,2,1,0) \\
\mu & =(3,2,2,1,1,1,0,0)
\end{aligned}
$$

Zeta and eta

Conjecture (Armstrong)
The zeta map is a bijection on (a, b)-Dyck paths

Zeta and eta

Conjecture (Armstrong)
The zeta map is a bijection on (a, b)-Dyck paths

Lets construct the inverse!!
(knowing zeta and eta)

Zeta inverse knowing eta

(N,N,N,E,N,E,E,E,N,E,E,E,E)

Zeta inverse knowing eta

Theorem (C.-Denton-Hanusa)

- γ is a cycle permutation.
- The east steps of π correspond to the descents of γ.

Zeta inverse knowing eta

Theorem (C.-Denton-Hanusa)

- γ is a cycle permutation.
- The east steps of π correspond to the descents of γ.
missing: combinatorial description of the area preserving involution

Square case

Theorem (C.-Denton-Hanusa)
Area preserving involution: reverse the path

Square case

Corollary (C.-Denton-Hanusa)
Inverse: descents of γ are the east steps of the inverse

$\gamma=(1,3,5,9,6,10,15,11,16,12,7,13,17,14,8,4,2)$

(N,N,N,E,N,N,E,N,E,E,N,N,E,E,E,E,E)

Square case

Corollary (C.-Denton-Hanusa)

Inverse: descents of γ are the east steps of the inverse

$\gamma=(1,3,5,9,6,10,15,11,16,12,7,13,17,14,8,4,2)$

(N,N,N,E,N,N,E,N,E,E,N,N,E,E,E,E,E)

Different from the known inverse description using "bounce paths"!

Square case

Theorem (C.-Denton-Hanusa)
Co-skew length is equal to the dinv statistic

Thank you!

