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Abstract

This paper is a little survey of the phenomenon of mirror symmetry
towards its connections with tropical geometry. In particular, using ideas
from Haase and Zharkov, we describe a tropical Calabi-Yau structure on
the complement of 24 points on a sphere. More precisely, we construct
in purely combinatorial terms dual pairs of integral affine structures on a
sphere, and construct a topological torus fibration of a K3 surface that
coincides with the combinatorial model in the large complex structure
limit.

1 Introduction

The phenomenon of mirror symmetry became of great interest for mathemati-
cians when theoretical physicists made predictions about the number of rational
curves on a Calabi-Yau manifold by invoking the “mirror” description. A full
mathematical understanding of this phenomenon is still being developed, even
though, it has inspired many mathematical contributions. Batyrev [2] gave a
powerful mirror symmetry construction for Calabi-Yau hypersurfaces in toric
varieties, later generalized by Batyrev and Borisov [4] to complete intersections.
Strominger, Yau and Zaslow [16] conjectured a geometric interpretation for mir-
ror symmetry in their paper “Mirror Symmetry is T -duality.” Following this
direction, names as Gross, Siebert and Wilson, among others have made great
progress and have found some connections between tropical geometry and mir-
ror symmetry. Specific and elegant examples of tropical Calabi-Yau’s can be
found in [9] and [10] by Haase and Zharkov. The present paper provides a little
survey of mirror symmetry following the ideas above.

The first part of the paper is concerned to Mirror symmetry. In Section
2 we show a brief introduction to toric varietes constructed from polyhedral
fans in Rd. Section 3 and 4 are devoted to present the Batyrev construction of
mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, and the inter-
pretation of mirror symmetry as duality of special Lagrangian torus brations by
Strominger, Yau and Zaslow.

In the second part of the paper we apply the constructions of Haase and
Zharkov to a specific example, namely a K3 hypersurface of a toric variety.
In Section 5 we construct an integral affine structure on the complement of 24
points on a sphere Σ, which gives rise to a natural torus fibration by taking
fiber wise quotients. In Section 6 we link the model to the topology of toric
K3 hypersurfaces Hs in a toric variety. The main result Theorem 6.3 asserts
that for any neighborhood N of the 24 points, and a hypersurface with large
enough complex structure, there is a torus bration of Hsm

s , a portion of the
hypersurface, over Σ\N , which is diffeomorphic to the restriction of our model
fibration.

3



2 A brief introduction to toric varieties

There are two standard ways of defining toric varieties, one of them is via integral
polyhedra, and the second and more general way is via rational polyhedral
fans. For our applications it is more convenient to work with the construction
associated to fans in Rd. We will describe toric varieties from this point of view,
but first we recall some definitions.

2.1 Toric varieties via polyhedral fans

A subset C ⊂ Rd is called a convex polyhedral cone if there is a finite set
{u1, . . . , ur} of non-zero vectors in Rd such that

C = {t1u1 + . . .+ trur ∈ Rd : ∀tj ≥ 0}

C is said to be a rational convex polyhedral cone if it is generated by a set of
vectors {u1 . . . ur} in Zd. We say that C is strongly convex if C contains no line
through the origin.

The dual cone of C ⊂ Rd is the set

C∨ = {b ∈ (Rd)∨ : 〈b, u〉 ≥ 0 for all u ∈ C}

A fan in Rd is a finite set F of rational strongly convex polyhedral cones in
Rd such that

1. If C ∈ F and σ is a face of C, then σ ∈ F.

2. If C,C ′ ∈ F, the C ∩ C ′ is a face of both C and C ′.

Let F be a fan in Rd and F be a field. For every cone C ∈ F we define the
semi-latice

SC∨ := Zd ∩ C∨ = {b ∈ Zd : 〈b, u〉 ≥ 0, for all u ∈ C}

and the associated toric chart

UZ[SC∨ ](F ) := Homsg(SC∨ , F×).

These collection of charts glue together to form the toric variety XF associated to
the fan F. In the following example we illustrate the glueing conditions between
charts.

2.2 Examples

All projective spaces are special cases of toric varieties. In examples below we
describe a toric construction for the product P1 × . . .× P1 of projective lines.
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Figure 1: The fan F2.

Example 2.1. Take in R2 the fan F2 = {C1, C2, C3, C4, C12, C23, C34, C41, C0}
corresponding to the fan in Figure 1.

Here C∨j = Cj and the homomorphisms ϕ ∈ UZ[SC∨
j

](F ) can be identified

with pairs (xj , yj) ∈ F 2 where

x1 = ϕ(1, 0) y1 = ϕ(0, 1)
x2 = ϕ(−1, 0) y2 = ϕ(0, 1)
x3 = ϕ(−1, 0) y3 = ϕ(0,−1)
x4 = ϕ(1, 0) y4 = ϕ(0,−1)

The dual cone C∨12 is equal to the upper half plane and the homomorphisms
ϕ ∈ UZ[SC∨12

](F ) are given by pairs (x, y) ∈ (F\{0})× F with

x = ϕ(1, 0) y = ϕ(0, 1)

The charts UZ[SC∨1
](F ) and UZ[SC∨2

](F ) intersect in UZ[SC∨12
](F ); the change of

coordinates is given by
x2 = x−1

1

y2 = y1

The toric variety XF2 is then covered by four affine charts corresponding to
the cones C1, C2, C3 and C4. They intersect in the charts of the other cones,
and the change of coordinates between charts are similar to the one above. In
this case, XF2 turns to be equal to the product P1 × P1 of two projective lines.
More explicitly, for ([x, x′], [y, y′]) ∈ P1 × P1 the bijection P1 × P1 → XF2 is
characterized by the equations

x1 = x
x′ y1 = y

y′

x2 = x′

x y2 = y
y′

x3 = x′

x y3 = y′

y

x4 = x
x′ y4 = y′

y
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Example 2.2. Take in Rd the fan Fd of which the maximal cones correspond
to the 2d cones of the form

C = R≥0(±e1) + . . .+ R≥0(±ed)

where e1, . . . , ed is the standard basis of Rd. The fan Fd is the set of all possible
intersections of its maximal cones. In particular, for d = 2 this fan coincides
with the fan presented in Example 2.1 above. The toric variety XFd is equal the
product P1 × . . .× P1 of d projective lines.

3 Batyrev interpretation of mirror symmetry vs
dual reflexive polytopes

Mirror symmetry is a phenomenon that was first discovered by physicists, it
conjectures that for any 3-dimensional Calabi-Yau manifold V there exists a
Calabi-Yau manifold V ∗, called the mirror manifold, for which two N = (2, 2)
supersymmetric quantum field theories associated to them are equivalent as
quantum field theories. The full understanding of mirror symmetry from the
mathematical point of view is still open and has inspired many mathematical
contributions in algebraic geometry, toric geometry, hodge theory among others.
The first explicit examples of mirror symmetry in physics were given by Greene
and Plesser in [?]. And later, Batyrev found and interesting toric generalization
of Greene-Plesser construction, that strongly uses the notion of duality between
reflexive polytopes.

Definition 3.1. A reflexive polytope ∆∨ ∈ Rd is a convex polytope with ver-
tices in Zd that contains the origin in its interior, and such that the vertices of
the dual polytope ∆ = {m ∈ (Rd)∗ : 〈m,n〉 ≤ 1 for all n ∈ ∆∨} belong to the
dual lattice (Zd)∗.

Consider two central triangulations of the polytopes ∆ and ∆∨. Let S and
T be induced triangulations of the boundaries ∂∆ and ∂∆∨, and denote by
F (respectively F∨) the fan composed by the cones spanned by the faces of S
(respectively T ). Denote by Haff

f the affine hypersurface

Haff
f = {x ∈ (C\{0})d : f(x) =

∑
m∈∆∩(Zd)∗

amx
m = 0}

where the set {am}m∈∆∩(Zd)∗ consist of generically chosen complex numbers.
The fan F∨ defines a simplicial subdivision of the normal fan to ∆, the pro-
jective toric variety XF∨ associated to F∨ contains (C\{0})d = UZ[S{0}∨ ](C)
(corresponding chart of the cone {0} in F∨) as a dense open subset. Let Hf

be the closure of Haff
f in XF∨ . If we repeat the same procedure with the dual

polytope ∆∨ we obtain the affine hypersurface

Haff
g = {x ∈ (C\{0})d : g(x) =

∑
m∈∆∨∩Zd

amx
m = 0}
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and denote by Hg the closure of Haff
g in XF.

The pair (Hf , Hg) equipped with some additional information about kahler
structures, is conjectured to induce isomorphic superconformal field theories
whose N = 2 superconformal representations are the same up to a sign change
[3], [5]. Strictly speaking, the conjecture only applies when Hf and Hg are 3-
folds, although the Batyrev mirror construction works in general. In particular,
if d = 4, then Hf (respectively Hg) is birational to a smooth Calabi-Yau 3-fold
Ĥf (respectively Ĥg) and one has that

h1,1(Ĥf ) = h2,1(Ĥg), h1,1(Ĥg) = h2,1(Ĥf )

In general, as proved by Batyrev in [3], the Hodge numbers of Hf and Hg are
related as follows

Theorem 3.2. If Hg is the Batyrev mirror of Hf , then

h1,1(Hf ) = hd−2,1(Hg), hd−2,1(Hf ) = h1,1(Hg).

which is a particular case of what is well known as the topological mirror
symmetry test [12]:

hp,q(Hf ) = hd−1−p,q(Hg), 0 ≤ p, q ≤ d− 1.

3.1 Examples

(Example 2.1 continued) Coming back to example 2.1. The fan F2 is the fan
F∨ associated to the triangulation of ∆∨2 in Figure 2. We saw before that the
projective toric variety XF∨ is equal to the product P1 × P1 of two projective
lines.

∆2 ∆∨
2

Figure 2: The traingulations {0} ∗ S of ∆2 and {0} ∗ T of ∆∨2 .

The family of affine hypersurfaces Haff
f is defined by possible linear combi-

nations of monomials corresponding to the lattice points in ∆2:

axy + bx+ cxy−1 + dy + e+ fy−1 + gx−1y + hx−1 + ix−1y−1 = 0.

It determines a family of hypersurfaces Hf in P1 × P1 whose defining equa-
tions are homogeneous polynomials of degree (2,2). if ([X1, X2], [Y1, Y2]) ∈
P1 × P1, the family is given by:

aX2
1Y

2
1 +bX2

1Y1Y2+cX2
1Y

2
2 +dX1X2Y

2
1 +eX1X2Y1Y2+fX1X2Y

2
2 +gX2

2Y
2
1 +hX2

2Y1Y2+iX2
2Y

2
2 = 0
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4 Mirror symmetry as duality of special Lagrangian
torus fibrations

In 1996 Strominger, Yau and Zaslow [16] proposed a geometric construction of
mirror manifold via special Lagrangian torus fibration. They conjecture that a
Calabi-Yau 3-fold should admit a special Lagrangian torus fibration, and that
the mirror manifold can be obtained by dualizing the fibers.

In the following Sections we mix ideas from both Batyrev and SYZ inter-
pretations of mirror symmetry. More precisely, we describe a dual pair of torus
fibrations of mirror K3 hypersurfaces in toric varieties.

5 The combinatorial model of Haase and Zharkov

In this Section we introduce a purely combinatorial model for an integral affine
structure on the complement of 24 points on a sphere, this induces a topological
torus fibration of a K3 surface that will be described in Section 6. All the ideas
and constructions that we use in the rest of the paper are basically taken from
the paper [9] by Haase and Zharkov.

We start with a dual pair of d-dimensional reflexive polytopes ∆ and ∆∨ as
before. Let λ ∈ Z∆∩(Zd)∗ , and ν ∈ Z∆∨∩Zd be two sufficiently generic vectors
that induce central coherent triangulations of ∆ and ∆∨. These triangulations
restrict to triangulations S and T on the boundaries ∂∆ and ∂∆∨, and induce
fans F and F∨ given by the cones spanned by the faces of S respectively T . We
define polytopes

∆ν = {m ∈ (Rd)∗ : 〈m,n〉 ≤ ν(0)− ν(n) for all n ∈ ∆∨ ∩ Zd}

∆∨λ = {n ∈ Rd : 〈m,n〉 ≤ λ(0)− λ(m) for all m ∈ ∆ ∩ (Zd)∗}

whose normal fans are given by F∨ respectively F.

0

0 0

0

0

0

0

1

4

4

4

1

11

1

1

1

1

0

0 0

1

0

0

0

Figure 3: ∆ =conv(±e1 ± e2 ± e3), ∆∨ =conv(±e1,±e2,±e3)
The values of λ and ν are marked on the vertices, λ(0) = 16, ν(0) = 1
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Figure 4: ∆ν ∆∨λ

5.1 The base and the discriminant locus

The base of our torus fibration is going to be a subcomplex Σ of the (d − 1)-
dimensional complex:

|Σ| = {(m,n) ∈ ∆×∆∨ : 〈m,n〉 = 1}

Figure 5: The complex |Σ| and the subdivision S × T restricted to |Σ|

Figure 5 shows the complex |Σ| for the polytopes ∆ and ∆∨ above. Notice
that in this case, |Σ| lives in the 6-dimensional euclidian space R3 × R3, never-
theless one can draw a picture of it using just three dimensions. More over, it
is proven in [9] that |Σ| is topologically a (d − 1)-sphere, we will come back to
this in Section 5.4. For now, notice that the faces of |Σ| are of the form F ×F∨,
for F and F∨ dual faces of ∆ and ∆∨. For instance, each of the 8 vertices
of the cube in our example is dual to one of the triangles on the boundary of
the octahedron, each edge is dual to an edge and each square face is dual to a
vertex. The 2-dimensional faces of |Σ| are given by 8 faces of the form (vertex,
triangle), 12 of the form (edge, edge) and 6 of the form (square, vertex). We
define Σ and the singular locus D as follows:

For a poset P, the poset/simplicial complex of chains in P is denoted by
bsd(P).
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Definition 5.1. Σ is the restriction to |Σ| of the product subdivision bsd(S)×
bsd(T ) of ∆×∆∨

Geometrically speaking, the boundary subdivision bds(S) (respectively T )
is the subdivision induced by the barycenters of simplices σ ∈ S (respectively
T ), and the vertices of Σ are pairs (σ̂, τ̂) of barycenters of simplices σ ∈ S and
τ ∈ T such that 〈σ, τ〉 = 1.

Definition 5.2. The singular locus D is the full subcomplex of Σ, induced by
vertices (σ̂, τ̂), such that neither σ nor τ is 0-dimensional.

Remark: The topology of Σ\D is very simple [9, Lemma 2.2]. It is homotopy
equivalent to bipartite graph Γ with vertex set vert(S) ∪ vert(T ) with an edge
between v ∈ vert(S) and w ∈vert(T ) if and only if 〈v, w〉 = 1. In our example,
vert(T ) corresponds to vertices of the octahedron, vert(S) are the lattice points
in the boundary of the cube, and a vertex w ∈ vert(T ) is connected to all lattice
points in the square face of the cube which is dual to w.

We introduce below an open covering of Σ\D. Consider the two natural
projections

p1 : Σ→ bsd(S) and p2 : Σ→ bsd(T ).

For a vertex v ∈ vert(S) or w ∈ vert(T ), define Uv respectively Vw to be the
preimages

Uv = p−1
1 (starbsd(S)(v)) and Vw = p−1

2 (starbsd(T )(w))

of open stars in the barycentric subdivisions. Here, starbsd(S)(v) denotes the
union of all faces in bsd(S) which contain v as a vertex.

The collection U ∪ V for U = (Uv)v∈vert(S) and V = (Vw)w∈vert(T ), is an
open covering of Σ\D. The singular locus is given by D = ∂U ∩ ∂V where
∂U =

⋃
∂Uv and ∂V =

⋃
∂Vw.

5.2 Integral affine structure and monodromy

We define an integral affine structure on Σ\D, using the covering U ∪ V. That
is, a coordinate covering with transition maps in SL(n,Z) n Rn on the non-
empty overlaps, such that the usual cocycle condition is satisfied. Notice that
two members Uv and Vw of our covering intersect if and only if 〈v, w〉 = 1, the
members of U are disjoint to each other as well as the members of V.

Definition 5.3. For a point q ∈ Uv we identify the tangent space Tq(Σ\D) and
the lattice TZ

q in it with the following codimension 1 subspace and sublattice of
the pair (Rd,Zd):

Tq = Rdv = {n ∈ Rd : 〈v, n〉 = 0}, TZ
q = Zdv = {n ∈ Zd : 〈v, n〉 = 0}

For a point q ∈ Vw we identify the tangent space Tq(Σ\D) and the lattice in it
with the (d− 1)-dimensional quotients

Tq = Rd/w, TZ
q = Zd/w

10



Figure 6: The doted lines are ∂U , and the dashed lines are ∂V. Their intersection
D consists of 24 points.

On the overlap Uv ∩ Vw, we define the transition map fvw : Rdv → Rd/w to be
the restriction to the subspace Rdv of the natural proection Rd → Rd/w.

These transition maps respect the integral structure: fvw ∈ Hom(Zdv,Zd/w),
and the condition 〈v, w〉 = 1 ensures that fvw is an isomorphism. The cocycle
condition for the graph-type covering is trivial.

Monodromy: The monodromy around a singularity is completely deter-
mined by monodromy around simple loops in the graph Γ: they consist of 4
edges: (v0, w0), (w0, v1), (v1, w1), (w1, v0) for some pair of edges {v0, v1} ∈ S,
{w0, w1} ∈ T . In our example, w0, w1 are any vertices of the octahedron, and
v0, v1 are the middle point and a vertex of the dual edge of {w0, w1} in the cube.
For instance, if w0 = (1, 0, 0), w1 = (0, 1, 0) and v0 = (1, 1, 0), v1 = (1, 1, 1), we
can choose {e1, e2} = {(−1, 1, 0), (0, 0, 1)} as a basis of Tv0 . The monodromy
transformation T (v0w0v1w0) : Tv0 → Tv0 along the loop (v0w0v1w0) is charac-
terized by T (v0w0v1w0)(e1) = e1 and T (v0w0v1w0)(e2) = e1 + e2. Hence, the
monodromy along a simple loop around a singular point is given by(

1 1
0 1

)
5.3 The torus fibration

The torus fibration over Y = Σ\D is constructed as follows. We define the tori:

T := Rd/Zd, Tv := (Rdv)/(Zdv), T/w := (Rd/w)/(Zd/w).

For 〈v, w〉, the transition isomorphism fvw ∈ Hom(Zdv,Zd/w) induces an iso-
morphism of the tori, which we will denote by the same symbol

fvw : Tv → T/w

11



We form the relative quotient W → Y with fibers Wq = TqY/T
Z
q Y . Thus,

the fibers are Wq = Tv when q ∈ Uv, and Wq = T/w when q ∈ Vw, with the
canonical identifications fvw : Tv → T/w for q ∈ Uv ∩ Vw.

The duality between reflexive polytopes leaves invariant Σ and the discrim-
inant locus D, if we interchange ∆ and ∆∨, and consider the integral affine
structure to be dual to the original one, we obtain a dual torus fibration over
the same base whose fibers are dual to the original ones.

Let N(D) ⊂ Σ be aregular neighborhood of the discriminant locus. Let
W ε → Σ\N(D) denote the torus fibration associated to the original integral
affine structure restricted to the complement of N(D) in Σ. In Section 6 we
will see that the torus fibration W ε on Σ\N(D) embeds differentially into Hs

for sufficiently large s. The dual torus fibration by symmetry embeds into the
mirror hypersurface.

5.4 Isomorphism between ∂∆∨
λ and |Σ|

Haase and Zharkov in [9] developed a nice generalization of boundary subdivi-
sions, and used it to give a proof of the sphericity of |Σ|. More precisely, they
describe a coherent subdivision of ∂∆∨λ (alternatively ∂∆ν), which is isomorphic
to the restriction to |Σ| of the product subdivision bsd(S)× T . This Section is
devoted to explain such isomorphism in the particular case of the example in
Figures 3 and 4. We will do so in two steps:

Figure 7: Subdivision of ∆∨λ combinatorially isomorphic to the restriction to |Σ|
of the product subdivision bsd(S)× T .

Step 1: This step is concerned to a bijective correspondence between the 2-
dimensional faces of the polytope ∆∨λ and the open neighborhoods {Uv}v∈vert(S).
There is natural duality between vertices of S and maximal-dimensional faces of
∂∆∨λ . Every vertex v ∈ vert(S) determines a defining inequality of ∆∨λ , the dual
face σv ⊂ ∂∆∨λ of v is the one that represents the inequality of v. This duality
turns into a duality between maximal-dimensional faces of ∂∆∨λ and the open
neighborhoods {Uv}v∈vert(S) as we wanted. In our example, the six octagon
faces of ∆∨λ correspond to the six octagons {Uv} for v the mid points of the
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square faces of ∆, the twelve rectangles of ∆∨λ correspond to twelve open sets
{Uv} with v the mid points of the edges of the cube ∆, and the eight hexagons
of ∆∨λ correspond to the eight open sets {Uv} with v a vertex of ∆.

Step 2: In this step, we construct a subdivision of σv combinatorially iso-
morphic to the subdivision bsd(S)× T restricted to Uv.

There are three types of faces σv: Octagons, rectangles and hexagons. Figure
8 shows the subdivisions for each one of this types.

Figure 8: Subdivision of σv combinatorially isomorphic to the subdivision
bsd(S)× T restricted to Uv, for v a vertex of the cube ∆.

6 Torus fibration of a K3 surface

We consider a family of affine hypersurfaces given by

Haff
s := {x ∈ (C\{0})d :

∑
m∈∆∩(Zd)∗

ams
λ(m)xm = 0}

The projective toric variety X∆ν associated to the polytope ∆ν is equivalent to
the toric variety XF∨ for the normal fan F∨ of ∆ν which is given by the cones
spanned by the faces of T . It contains UZ[S{0}∨ ](C) = (C\{0})d as a dense open
subset, and we can think of Haff

s as a hypersurface on this chart. Let Hs be the
closure of Haff

s in X∆ν
.

According to [6, Ch. 10], the hypersurfaces given by these particular equa-
tions are all diffeomorphic to each other (in the orbifold sense). For that reason,
we can set the coefficients am = 1 without loss of generality.

Our K3 surface is the hypersurface Hs for our imput data in example of
Figure 3. In this section we construct a torus fibration Hsm

s → Σ\N(D) on a
“Smooth” part of Hs, for large enough s, and show that it is the same as our
model fibration W ε → Σ\N(D).

6.1 Amoebas of hypersurfaces

Let Logs : (C\{0})d → Rd be the logarithmic map with base |s| 6= 1:

Logs(x) :=
log(|x|)
log|s|

=
{

log|x1|
log|s|

, . . . ,
log|xd|
log|s|

}

13



The preimage of a point n = (n1, . . . , nd) ∈ Rd under the Logs map is the torus:

Lot−1
s (n) = {x ∈ (C\{0})d : xj = |s|njeiθj and 0 ≤ θj ≤ 2π}

Definition 6.1. ([6, Ch. 6]) The Amoeba associated to the family of affine
hypersurfaces Haff

s is the image of the log map:

Aλs := Logs(H
aff
s )

The geometry of amoebas of affine hypersurfaces is a well developed subject
that originated in the work of Gelfand, Kapranov and Zelevinsky [6]. The lim-
iting behavior of amoebas as s→∞ can be described in terms of the Legendre
transform Lλ : Rd → R of the vector λ:

Lλ(n) = max
m∈∆∩(Zd)∗

{〈m,n〉+ λ(m)}

Lλ(n) is a piecewise linear convex function. The non-Archimedean amoeba
Aλ∞ ⊂ Rd is defined as the corner locus of Lλ(n) (the set of points where Lλ(n)
is not smooth). Aλ∞ induces a polyhedral complex subdivision of Rd, whose face
lattice is in a reverse order bijective correspondence with the face lattice of the
triangulation {0} ∗ S. The bounded maximal cell of this complex is precisely
the polytope ∆∨λ .

Now we are ready to define the vector field
∂∆

Now we are ready to define the vector field
∆∨

0

4

1 0

0 0

0

0

0

0

1

1

1

1

Figure 9: The affine amoeba Aλs with the corresponding spine Aλ∞ for the family
Haff
s = [s4 + sx+ sy + sx−1 + sy−1 + xy + x−1y + x−1y−1 + xy−1 = 0]

6.2 The foliation

In this section we will exhibit a vector field X on R3\∆∨λε for our imput data in
Figure 3. The desired foliation F is the one induced by X.

14



Denote by λε ∈ R∆∩(Zd)∗ the vector given by λε(0) = λ(0), and λε(v) =
λ(v) + ε for v ∈ vert(S). Suppose that ε > 0 is small enough to ensure that λ
and λε induce the same triangulation. Then ∂∆∨λε ⊂ ∂∆∨λ are combinatorially
equivalent.

Figure 10: The vector field X on R3\∆∨λε .

Haase and Zharkov [9, Section 3.3] introduced a vector field in a more general
way. Given a neighborhood N2(∂V) of ∂V ⊂ ∂∆∨λ ∼= Σ, it satisfies that X(q) = w
for every q ∈ Vw\N2(∂V), and it smoothly changes from one open set Vw to
other. Their construction applied to our example in Figure 3 is easy to describe
and satisfies the following two main properties:

1. If n ∈ Fq with q ∈ U εv , then 〈v,X(n)〉 = 1.

2. if n ∈ Vw\N2(∂V), the flow line Fn through n is a straight line parallel to
w outside ∆∨λε

6.3 The torus fibration

Using the foliation F we define a decomposition of the hypersurface Hs =
Hsm
s t Hsing

s , construct a torus fibration Hsm
s → Σ\N(D) and show that it is

isomorphic to the fibration W ε → Σ\N(D).
For any closed subset J ⊂ Σ we will denote by Xs(J) ⊂ X∆ν

the closure of
Log−1

s (∪q∈JFq) in X∆ν
.

Definition 6.2. Let N(D) be a regular neighborhood of D in Σ. Then the
smooth part of the hypersurface is Hsm

s := Hs ∩ Xs(Σ\N(D)), and the rest
Hsing
s := Hs\Hsm

s is singular.

Since D = ∂U ∩ ∂V, there exists regular neighborhoods N1(∂U) of ∂U and
N2(∂V) of ∂V in Σ, such that N(D) ⊃ N1(∂U) ∩N2(∂V). Thus, Σ\N(D) can
be covered by the union of the closed sets:

Uε = {U εv} = {Uv\N1(∂U)} and Vδ = {V δw} = {Vw\N2(∂V)}
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The amoebas Aλs , for a large enough s, all lie in Rd\∆∨λε . This means that F
defines a projection Aλs → Σ and, by composition with Logs, the projection
Haff
s → Σ.

The set U εv lie in the interior of a two dimensional face of ∆∨λ . Since the
unbounded ends of flow lines Fq, for q ∈ U εv , do not intersect the amoeba
for a large enough s, their closures do not contain any extra points of the
hypersurface:

Haff
s ∩Xs(U εv) = Hs ∩Xs(U εv)

Thus the map Hs ∩Xs(U εv) → U εv is well defined. On the other hand, for two
distinct points q1, q2 in V δw the corresponding leaves are straight lines and the
sets Xs(q1) and Xs(q2) are disjoint. Hence, the map Hs ∩ Xs(V δw) → V δw is
well defined. Combined together we have (for large enough s) the well defined
projection

fs : Hsm
s → Σ\N(D), fs(x) := q ⇔ x ∈ Xs(q).

Theorem 6.3. There exits a real number s0, such that for any s with |s| ≥ s0,

fs : Hsm
s → Σ\N(D)

is a torus fibration isomorphic to W ε → Σ\N(D).

Proof. For v ∈ vert(S), we consider the (∆ ∩ (Zd)∗ − 2)-parameter family of
hypersurfaces Hv

s (a) in Xs(U εv):

sλ(0) + sλ(v) +
∑

m6={0},v

ams
λ(m)xm = 0, 0 ≤ am ≤ 1.

Lemma 6.4. [9, Lemma 3.8] There exist a real number s0 such that whenever
|s| ≥ s0, all Hv

s (a) are smooth and transversal to Xs(q) for every q ∈ U εv .

As a consequence, we have that Hv
s (a) restricted to Xs(q) is diffeomorphic

to Hv
s (0) restricted to Xs(q), which is characterized by the set of values x that

satisfy:
sλ(0) + sλ(v)xv = 0, with xj = |s|nje2πiθj

for some n ∈ Fq and arbitrary θ. In order to have a solution to this equation, we
need the absolute values |sλ(0)| = |s|λ(0) and |sλ(v)xv| = |s|λ(v)+〈v,n〉 to be equal
to each other. Since 〈v,X(n)〉 = 1 for all n ∈ Fq, then there is only one point
of Fq that satisfies this condition, this point is precisely n = q. On the other
hand, the arguments of the two terms in the equation above should be opposite
so that they cancel to each other. Therefore, if 2πθs denotes the argument of
the complex number s, then x ∈ Hv

s (0) ∩ Xs(q) if and only if xj = |s|qje2πiθj

with
〈v, 2πθ〉+ (λ(v)− λ(0))2πθs − π ≡ 0 mod 2π,

which is equivalent to

〈v, θ〉+ (λ(v)− λ(0))θs − 1/2 ≡ 0 mod Z.
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If θ0 is a particular solution to this equation, then any other solution is of the
form θ − θ0 with θ ∈ Rd satisfying the relation

〈v, θ〉 ≡ 0 mod Z.

Thus, for any q ∈ U εv the fiber Fq := Hs∩Xs(q) is diffeomorphic to hypersur-
face Hv

s (0) restricted to Xs(q), which is a torus that can be naturally identified
with the torus Tv = (Rdv)/(Zdv): Recall from Section 5.2 that

Rdv = {n ∈ Rd : 〈v, n〉 = 0}, Zdv = {n ∈ Zd : 〈v, n〉 = 0}

For n ∈ Rdv, the identification θ = n gives rise to an identification of the two
tori. In order to argue the last statement we need to check two things:

1. Every θ such that 〈v, θ〉 ≡ 0 mod Z, has a representative θ̃ with 〈v, θ̃〉 = 0.
If 〈v, θ〉 = k, just take θ̃ = θ−kw for some lattice point w with 〈v, w〉 = 1.

2. Let θ1, θ2 ∈ Rdv. Then θ1, θ2 represent the same element of Hv
s (0) ∩Xs(q)

if and only if θ1 − θ2 belongs to the lattice Zdv, which is trivial.

Similarly, for w ∈vert(T ) we consider the (∆ ∩ (Zd)∗ − w⊥ − 1)-parameter
family of hypersurfaces:

sλ(0) +
∑
m∈Gw

sλ(m)xm +
∑

m/∈Gw∪{0}

ams
λ(m)xm = 0, 0 ≤ am ≤ 1,

where Gm is the set of lattice points of ∆ whose inner product with w is equal
to 1. We denote by Hw

s (a) its closure in Xs(V δw)

Lemma 6.5. [9, Lemma 3.9.] There exists a real number s0 such that whenever
|s| ≥ s0, all Hw

s (a) are smooth and transversal to Xs(q) for every q ∈ V δw.

As before, this implies that for any q ∈ V δw the fiber Fq := Hs ∩ Xs(q) is
diffeomorphic to Fwq := Hw

s (0) ∩Xs(q).
But Fwq can be identified with the torus T/w as follows. We choose a basis

{ei} of (Zd)∗ with

〈e1, w〉 = −1 and 〈ei, w〉 = 0, i = 2, . . . , d.

Then we can think of yi = xei 6= 0 as new coordinates in the toric variety XF∨

that can be extended by allowing zero values for y1 (when the flow line Fq goes
to infinity in direction w). If m ∈ Gw then e1 + m is orthogonal to w, and
so y1x

m = xe1+m does not depend on the variable y1. Thus, multiplying the
defining equation of the hypersurface Hw

s (0) by y1 we get:

sλ(0)y1 + P (y2, . . . , yd) = 0

where P (y2, . . . , yd) is a Laurent polynomial independent of y1. On the other
hand, the flow line Fq through q is a line parallel to w, then, restricting the hy-
persurface to the fiber Xs(q) means fixing absolute values of yi, i = 2, . . . , d

17



(|yj | = |s|〈q.ej〉). A point on the torus T/w determines the phases of yi,
i = 2, . . . , d. Onces yi, i = 2, . . . , d, are fixed, there is a unique solution to
the equation of Hw

s (0).

Thus, we have proven that fs : Hsm
s → Σ\N(D) is a torus fibration over two

kind of covering patches whose fibers are diffeomorphic to the ones obtained in
the combinatorial model. The only thing left to check is that it has the correct
monodromy.

Note that all diffeomorphisms Fq ∼= F vq , q ∈ U εv , and Fq ∼= Fwq , q ∈ V δw,
are deformation diffeomorphisms. Hence, the transitions mapas between Tv
and T/w, for q ∈ Uv ∩ Vw, are homotopic to the map fvw : Tv → T/w. But
monodromy is a homotopy invariant, hence, it has to be equal to the one given
by the maps fvw. This completes the proof.
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