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Abstract

A coloring of a fine mixed subdivision of a simplex gives rise to an
acyclic system of permutations on the edges of the simplex. In particular,
we prove that a system on the edges of an equilateral triangle is achiev-
able through a coloring if and only if it is acyclic, and provide evidence
to conjecture that the same result is true for simplices in any dimension.
Our work is related to the results on triangulations of products of sim-
plices, Schubert calculus, tropical hyperplane arrangements and tropical
oriented matroids, obtained by Santos, Ardila-Billey, Develin-Sturmfels
and Ardila-Develin, among others. It also settles a special case of a
conjecture of Ardila-Billey about the positions of the simplices in a fine
mixed subdivision and provides precise explanation about the behavior of
a generic pseudo tropical hyperplane at infinity.
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1 Introduction

The study of colorings of fine mixed subdivisions of the delated sim-
plex n∆d−1 gives us geometrical and combinatorial tools that can be
used in many topics in mathematics. They are pseudo tropical hy-
perplane arrangements in tropical geometry, and the study of such
arrangements at infinity can be regarded as the system of colors on
the edges of the simplex. In this paper we explore the rich combi-
natorial structure of these systems and find that they have similar
properties to the ones that appear in matroid theory [5]. A well
developed theory of colorings could simplify the understanding and
developing of the theory of tropical oriented matroids; for instance,
it could prove conjectures about the representability of an oriented
matroid as a tropical pseudo hyperplane arrangement.

The paper is organized as follows. In Section 2, we introduce
the ideas of lozenge tilings of a triangle, fine mixed subdivisions of
a simplex, and present Conjecture 2.2 of Ardila-Billey in [1]. In
Section 3, we define the system of colors associated to a lozenge
tiling of a triangle, and prove one of the main results of the the-
sis: Theorem 3.1. It basically says that a system of permutations
on the edges of a triangle is achievable through a coloring if and
only if it is acyclic. Then, we define the notion of colorings of fine
mixed subdivisions of a simplex, prove that they give rise to acyclic
systems of colors on the edges of the simplex, Theorem 3.13, and
conjecture that every acyclic system of permutations on the edges
of a simplex is achievable through a coloring, Conjecture 3.14. In
section 4, we define dual systems and introduce dual subdivisions
using the Cayley trick in [2]. In Section 5, we define operations
of deletion and contraction for fine mixed subdivisions and acyclic
systems, and use them to give a proof of Proposition 5.10, which
says that the dual system of colors of a given subdivision is equal to
the system of the dual subdivision. Finally, in Section 6 we use the
theory of acyclic systems in order to give an other proof of Theorem
6.3 first proved by Ardila and Billey in [1]. We also prove a special
case of Conjecture 3.14 that says that every acyclic system on the
edges of a simplex of size 3 in every dimension is achievable through
a coloring, and Theorem 6.5 that is the special case of Conjecture
2.2 of Ardila-Billey for simplices of size 3 in every dimension.
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2 Lozenge tilings and fine mixed subdivisions of
a simplex

The combinatorial and geometrical properties of subdivisions of a
simplex are interesting by themselves and have been studied from
different points of view by Santos [2], Ardila-Billey [1], Develin-
Sturmfels [4], Ardila-Develin [3], among others. A recent source of
interest in these objects comes from tropical geometry: results by
Develin-Sturmfels [4] and Santos [2] show that arrangements of n
tropical hyperplanes in the tropical space of dimension d − 1 are
in bijective correspondence with regular fine mixed subdivisions of
the simplex n∆d−1. Via this relation, we study the behavior of
a (pseudo) tropical hyperplane arrangement at infinity by studying
the combinatorics of the corresponding subdivision. Before thinking
about fine mixed subdivisions of a simplex, let us start by study-
ing the slight easier problem of understanding lozenge tilings of an
equilateral triangle.

2.1 Lozenge tilings of an equilateral triangle

Figure 1: T (4) and the four tiles allowed

Let T (n) be an equilateral triangle with length n. Suppose we
wanted to tile T (n) using unit rhombi with angles equal to 60◦ and
120◦. It is easy to see that this task is impossible, for the following
reason. Cut T (n) into n2 unit equilateral triangles, as illustrated
in Figure 1; the number of upward triangles is equal to n plus the
number of downward triangles, since a rhombus always covers one
upward triangle and one downward triangle, we cannot use them to
tile T (n). Suppose that we can also use n upward triangles. Now, it
may or may not be possible to tile the remaining shape with rhombi.
Figure 2 shows a Lozenge tiling of T (4), which is defined as a tiling
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of T (n) using n upward triangles and rhombi.

Figure 2: A Lozenge tiling of T (4)

The main question we address in this section is the following:
Given the n positions of the little upward triangles in T (n), is there
a simple criterion to determine whether there exists a lozenge tiling
containing the triangles at those positions?. Theorem 6.2. in [1] by
Ardila-Billey, gives us an answer to this question.

Theorem 2.1 (Ardila-Billey, Theorem 6.2. in [1]). Let S be a set
of n little upward triangles in an equilateral triangle T (n). The
triangle T (n) with holes at S can be tiled with unit rhombi if and
only if every sub-triangle T (k) in T (n) contains at most k holes of
S for all k ≤ n.

2.2 Fine mixed subdivisions of a simplex

Now we want to generalize lozenge tilings to high dimensional sub-
divisions of a simplex. A good high-dimensional analogue of lozenge
tilings of the triangle n∆2 are fine mixed subdivisions of the simplex
n∆d−1; we briefly recall their definition. The Minkowski sum of
polytopes P1, ..., Pk in Rm is:

P = P1 + ... + Pk := {p1 + ... + pk|p1 ∈ P1, ..., pk ∈ Pk}.

We are interested in a (d − 1)-dimensional simplex of size n which
is the Minkowski sum n∆d−1 of n simplices

∆d−1 = {x = (x1, . . . , xd) ∈ Rd : xi ≥ 0 and x1 + . . . + xd = 1}.

A fine mixed subdivision of n∆d−1 is a subdivision1 of n∆d−1 into
fine mixed cells, where a fine mixed cell is a Minkowski sum B1 +

1A subdivision of a polytope P is a tiling of P with polyhedral cells whose vertices are
vertices of P , such that the intersection of any two cells is a face of both of them.
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...+Bn such that the Bis are faces of n∆d−1 which lie in independent
affine subspaces, and whose dimensions add up to d − 1. Figure 3
shows all the possible cells in dimension 3, and Figure 4 shows an
example of a fine mixed subdivision of 3∆4−1.

Figure 3: The cells in dimension 3

B

A

!"

C

D

ABCD + A + A
BCD + A + AB
CD + AC + AB
D + ACD + AB

BCD + AB + B
CD + ABC + B
CD + C + ABC
D + CD + ABC
D + D + ABCD
D + ABCD + B

Figure 4: A fine mixed subdivision of 3∆4−1 and its corresponding Minkowski
sums

Surprisingly, for high dimensional simplices, the number of little
simplices in every fine mixed subdivision is equal to the size of the
initial simplex. Ardila and Billey in [1] conjecture that

Conjecture 2.2 (Ardila-Billey, Conjecture 7.1. in [1]). The possible
positions of the simplices in a fine mixed subdivision of n∆d−1 are
precisely those for which every sub-simplex of size k contains at most
k of them.
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3 Colorings of fine mixed subdivisions of sim-
plices

In this section we define the coloring of a fine mixed subdivision.
Such colorings were introduced by Ardila-Develin in [3], represent
arrangements of tropical pseudo hyperplanes and play an impor-
tant role in the theory of tropical oriented matroids. We focus our
attention just in one part of the coloring, namely the system of
permutations of colors on the edges of the simplex. These systems
satisfy interesting properties that will be used in section 6 to make
progress towards Conjecture 2.2.

w
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r

b

p

g

g

r

r

b

b

pgrb
bprg
gbrp

A

B C

u
v

p

Figure 5: Coloring and system of permutations of a lozenge tiling of a triangle.

3.1 Coloring of a lozenge tiling

Given a lozenge tiling of a triangle, we assign different colors to
each one of the triangles and spread them via the rhombi as shown
in Figure 5; it appears a natural system of colors on the edges of the
triangle defined as follows: let u(j) be the color which is in position
j on the directed edge BA, v(j) be the color which is in position j
on the edge AC, and w(j) be the color which is in position j on the
edge CB. The main goal of this section is to characterize all the
possible systems u, v, w which come from a coloring, and prove that
the positions of the triangles in a tiling which gives rise to a given
system, are completely determined.

Theorem 3.1. Let u, v, w be a system of permutations on the edges
of a triangle, then
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1. The system u, v, w comes from a coloring of a tiling if and only
if there does not appear something of the form a...b, a...b, a...b
clockwise around the triangle. In other words, u, v, w is achiev-
able if and only if there is not a, b such that
u−1(a) < u−1(b), v−1(a) < v−1(b) and w−1(a) < w−1(b).

2. Given an achievable system, the positions of the triangles of
any tiling achieving it are completely determined.

First we need some technical results in order to prove this the-
orem. Let Gn be the directed graph whose set of vertices is the
triangular array Tn,3, where each dot not on the bottom row is con-
nected to the two dots directly below it (see Figure 6.). We assign
coordinates (M, m) to the vertices of Gn as follows: The coordinate
M of a point p = (M, m) increases as p gets close to the edge AC,
being M = 1 for the farthest vertex and M = n for the closest
vertices. On the other hand, coordinate m tell us how close is p to
the edge AB, being m = 1 for the closest vertices and m = n for
the farthest vertex. Figure 6 shows a routing and coordinates of the
graph G4.

For every tiling of an equilateral triangle Tn of size n, there is a
corresponding routing of the graph Gn. Given such a routing, one
can easily recover the tiling that gave rise to it: simply place one
rhombus over each edge in the routing, one vertical rhombus over
each isolated vertex, and one triangle over the upper vertex of each
rout. It is easy to check that this is a bijection between the rhombus
tilings of triangles of size n, and the routings in the graph Gn which
start anywhere and end at vertices on the edge BC.

21

31

41

22

32

42

33

43

44

A

B C
11

Figure 6: Tiling of T4, Routing of G4

and Coordinates (M, m)

If we call 1, ..., n the colors from left to right on the edge BC,

11



and (Mi, mi) the position of the triangle which contains color i, then
the following two algorithms give us all the information we need to
calculate the system u, v, w.
Algorithm 1:

1. Let Mi(i) = Mi.

2. For k = i− 1, i− 2, ..., 1, define Mi(k) as follows:

Mi(k) =

{
Mi(k + 1)− 1 if, Mi(k + 1) ≤Mk

Mi(k + 1) if, Mi(k + 1) > Mk

For instance, in Figure 6 we have

k 1234
M(k) 1344
M4(k) 2234
M3(k) 444
M2(k) 33
M1(k) 1

Algorithm 2:

1. Let mi(i) = mi.

2. For k = i + 1, i + 2, ..., n, define mi(k) as follows:

mi(k) =

{
mi(k − 1) + 1 if, mi(k − 1) ≥ mk

mi(k − 1) if, mi(k − 1) < mk

For instance, in Figure 6 we have

k 1234
m(k) 1214
m1(k) 1122
m2(k) 233
m3(k) 11
m4(k) 4

Proposition 3.2. u−1(i) = Mi(1), v−1(i) = mi(n) and w = n...21.

For instance, in the example above (Figure 6), 1,2,3 and 4 corre-
spond to colors purple, red, blue and green respectively, u = 1423,
v = 3124, w = 4321 and Mi(1) = 1342, mi(4) = 2314.
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Proof. Note that u−1(i) is the position of the edge BA on which
the color i hits. Also note that the path of the color i going from
the point (Mi, mi) to the edge BA decrease its coordinate M in 1
every time that this path cross a horizontal rhombus, or equivalently
every time that this path cross lines of the routing of Gn, which is
precisely what algorithm 1 does. Then, the final position of this
path, or equivalently, the final coordinate M of this path is equal
to Mi(1). Therefore u−1(i) = Mi(1). A similar argument apply for
v, and w = n...21 just because we call 12...n the colors from left to
right on the edge BC.

Given a tiling of a triangle we have constructed two permutations
u and w in a purely geometric way (we can always assume w = n...1).
Now, algorithms 1 and 2 give us a way to calculate them that only
depends on the coordinates (Mi, mi).

Theorem 3.3. Algorithms 1 and 2 determine a bijection u−1(i) =
Mi(1), v−1(i) = mi(n), between the n-tuples of coordinates (Mi, mi)
with 1 ≤ mi ≤ i ≤ Mi ≤ n, and all the (n!)2 possible pairs of
permutations u, v. More over

u = (n, ...,Mn) ◦ ... ◦ (2, ...,M2) ◦ (1, ...,M1)
v = (1, ...,m1) ◦ ... ◦ (n− 1, ...,mn−1) ◦ (n, ...,mn)

Corollary 3.4. Given an achievable system of permutations u, v, w
on the edges of a triangle, there exits an unique choice of the position
of the triangles that are generating such system. However, some
positions could generate several systems.

Proof. Given a system, the positions (Mi, mi) of the triangles are
completely determined by the theorem above.

We are ready to prove Theorem 3.1.

Proof theorem 3.1. Consider a coloring on a tiling of a triangle and
its corresponding system u, v, w of permutations of colors. Since
each color is composed by three lines which go from certain point
inside of the triangle to each one of the sides as shown in Figure
7, then every pair of colors a and b intersect at least twice. Fur-
thermore, every intersection occurs in a rhombus and the number
of rhombi is equal to

(
n
2

)
which is equal to the number of pairs of

colors. As a consequence, every pair of colors a and b intersect ex-
actly once. Now, we call A, B and C the three different regions that
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the triangle is subdivided in, for color a (see Figure 7). Without
lost of generality suppose that triangle b is in region C, then the
only possibility for v and w is ...a...b... and ...b...a.... Therefore, if
a system u, v, w is achievable through a coloring of a tiling, then it
does not appear any a...b, a...b, a...b.

C
a b

a

a
a

b

b

b

a...b,a...b,b...a

A

B

Figure 7: Behavior of the colors in a triangle

Now suppose we have a system u, v, w that is not achievable
through a coloring of a tiling. After some relabel of the colors we
can assume that w = n...1. Let (Mi, mi), i = 1, ..., n, be the n-
tuple in Theorem 3.3 for which algorithms 1 and 2 give us u−1(i) =
Mi(1) and v−1(i) = mi(n). Since the system is not achievable, it is
impossible to make a routing of the graph Gn connecting the points
(Mi, mi) to (i, i) for i = 1, ..., n. Then, if we start drawing the
routing from i = 1 to forward, there is a first element j for which
the path going from (Mj, mj) to (Mj, j) and then to (j, j), cross
inevitably some preceding rout. This only could happen if one of
the following three cases holds: Here we assume that the first j − 1
routs are the most left possible.

, mj

i

i

j j

Case 1 Case 2 Case 3

f fij

Mi

miMj

Figure 8: The three possible cases.
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Case 1: There is an i such that i < j, Mi ≥ Mj and mi ≥ mj.
Then Mj(j) ≤Mi(i), and so, Mj(i) < Mi(i). Thus, Mj(k) < Mi(k)
for all 1 ≤ k ≤ i, in particular Mj(1) < Mi(1), which implies
u−1(j) < u−1(i). On the other hand, mj(j) ≤ mi(i), and so,
mj(j) < mi(j). Thus, mj(k) < mi(k) for all j ≤ k ≤ n, in par-
ticular mj(n) < mi(n), which implies v−1(j) < v−1(i).

For the other two cases, consider the first vertex f of the graph
Gn going from j to the left, such that the vertex which is one position
on the left of f , is not in any of the first j − 1 routs.

Case 2: The first edge of the rout going from f to BC is parallel
to AC. Then, it is easy to see that Mj(i) < Mi = Mi(i), and so
Mj(1) < Mi(1), which implies u−1(j) < u−1(i). On the other hand,
mj = mj(j) < mi(j), then mj(n) < mi(n), i.e v−1(j) < v−1(i).

Case 3: The first edge of the rout going from f to BC is parallel
to AB. Then, it is not hard to see that there exist i ≤ k < j such
that mk(j) > mj = mj(j), then v−1(j) < v−1(k). On the other
hand, Mj(k) < Mk = Mk(k), then u−1(j) < u−1(k)

In summary, first we proved that if a system u, v, w is achievable
then it does not appear something of the form a...b, a...b, a...b. Then
we proved that if this system is not achievable, there exits a > b
(a = j and b = i or k) such that u−1(a) < u−1(b), v−1(a) < v−1(b)
and w−1(a) = n+1−a < n+1−b = w−1(b), i.e it appears something
of the form a...b, a...b, a...b.

3.2 Acyclic systems of permutations on the edges of a
simplex

Now we are interested in generalizing colorings of tilings to colorings
of high dimensional fine mixed subdivisions. Intuitively, a coloring
can be obtained by assigning different colors to each one of the
simplices and spreading the colors via the mixed cells. Below, we
formalize this notion and recover some of the geometrical properties
of a subdivision by looking at the combinatorics of it.

Geometrical interpretation of Minkowski sums: Every color
subdivides the simplex n∆d−1 in d regions. Which one am I in?.
If A, B, ..., C are the regions containing vertices A, B, ..., C respec-
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Figure 9: Coloration in dimension 3

tively, then a piece of the subdivision is represented by the Minkowski
sum S1+...+Sn, where i-component Si is the set of all regions of the
color i which the piece intersects (See Figure 10). Note that it not
only works for the full dimensional pieces of the subdivision, but for
any dimensional piece. Also note that in this paper, we often abuse
notation by using the n-tuple S1, ..., Sn to talk about the Minkowski
sum S1 + ... + Sn for simplicity.

Minkowski sums of the full dimensional cells

A
B C

A

B C

AB
AC

BC

ABC 1

2

3 4

First color and all the possible first components

A,ABC,A,A

AB,B,AC,A A,BC,AC,A

B,B,AC,AB ABC,B,C,A AC,BC,C,A

B,B,ABC,B B,B,C,ABC BC,B,C,AC C,BC,C,AC

Figure 10: i-components or Minkowski sums on a subdivision of 5∆2.

A good high-dimensional analogue of a color on a fine mixed sub-
division is a Tropical Pseudo-hyperplane in [3], that we define
using the Voronoi Subdivisions; we briefly recall their definition.
The Voronoi Subdivision of a k- simplex A1...Ak divides it in
k regions, where region j consists of the points in the simplex for

16



which Aj is the closest vertex.
In this paper we will denote by S the set of the cells (of any dimen-
sion) on a fine mixed subdivision of n∆d−1, and we will refer to S
itself as a fine mixed subdivision.

Definition 3.5. The skeleton of the Voronoi subdivision of a sim-
plex Si is the set of points inside of Si for which the minimum
between the distances from the point to the vertices of Si achieves
at least twice.

Definition 3.6. The color i is the polyhedral complex whose cells
are Minkowski sums S1 + ... + Si−1 + Ri + Si+1, ..., Sn for which
(S1 + ... + Sn) ∈ S, |Si| ≥ 2 and Ri is the skeleton of the Voronoi
subdivision of Si. (See Figures 5, 9 and 10).

Color i corresponds to a tropical pseudo-hyperplane in tropical
geometry. It has as central point the middle point of the simplex
i and spread its leaves through the mixed cells of the subdivision.
Each color hits the edges of the simplex exactly once, producing a
natural system of colors defined as follows:

Definition 3.7 (The system of colors). Let S be a fine mixed sub-
division of the simplex n∆d−1 with vertices A1, .., Ad. The system
of colors CS is the set of all permutations Ad1Ad2 : [n] → [n],
d1 6= d2 ∈ [d],where Ad1Ad2(j) is defined as the coordinate that
is equal to Ad1Ad2 of the unique element of S that is written using
only letters Ad1 , Ad2 and has exactly j letters equal to Ad2 .

The nature of the previous definition can be checked in Figure 11.
and explained as follows: The one dimensional cells of the subdivi-
sion that are located at the edge Ad1Ad2 correspond to the elements
of S which are written using only letters Ad1 , Ad2 . The one dimen-
sional cell on this edge containing color i has i-component Ad1Ad2

and other components equal to either Ad1 or Ad2 . And the position
j of the color i is equal to the number of letters Ad2 .

Note that now one can even calculate the system of colors geomet-
rically by looking at the picture, or just by looking at the combina-
torics of the list of elements of S. This definition has the advantage
of a precise way of computing systems of colors for higher dimen-
sional fine mixed subdivisions that can be used in order to prove
theorems.
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CB=312

1

2 3

A

B C1

1 1

2

2

23

3

3

2 3

A

B C
1

B,BC,B BC,C,B C,C,BC

AB,B,B

A,AB,B

A,A,AB A,AC,A

A,C,AC

AC,C,C

BA=123
AC=231

Figure 11: A system of colors and the Minkowski sums on the edges of 3∆2.

Definition 3.8. Let S be a fine mixed subdivision of the simplex
n∆d−1 with vertices A1, ..., Ad, and U ⊂ {A1, ..., Ad}. The restric-
tion S|U is the set composed by the elements of S that are written
using just letters from U .

Geometrically, the restriction S|U corresponds to the set of Minkowski
sums of the restriction of the fine mixed subdivision S over the face
of the simplex with vertices at U . In fact

Proposition 3.9. The restriction S|U is the set of Minkowski sums
of a fine mixed subdivision of n∆|U |−1 with vertices at U .

Proof. An special case of the Cayley Trick in [2] that will discussed
in Section 4.2 give us a bijection between fine mixed subdivisions
of n∆d−1 and triangulation of the polytope ∆n−1 × ∆d−1. Then,
the restriction of the corresponding triangulation of S to the face
∆n−1 × ∆|U |−1 where the second component is the simplex with
vertices at U , corresponds to the fine mixed subdivision S|U .

Definition 3.10. A system of permutations C on the edges of
n∆d−1 is a set of permutations Ad1Ad2 : [n] → [n], 1 ≤ d1, d2 ≤ d,
such that Ad1Ad2(j) = Ad2Ad1(n− j + 1).

Definition 3.11. Let C be a system of permutations on the edges
of n∆d−1. For every 1 ≤ i, j ≤ n, the graph Gij(C) has vertices at
[d], and, we draw a directed edge d1 → d2 if the permutation Ad1Ad2

is of the form ...i...j....

Figure 14 shows two examples of the graphs G12, G13, G23 as-
sociated to systems of colors of fine mixed subdivisions of 3∆2 and
3∆3.
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Definition 3.12. Let C be a system of permutations on the edges
of n∆d−1. We will say that C is acyclic if the graphs Gij(C) are
acyclic for all 1 ≤ i, j ≤ n. Some times we call Gij = Gij(C) for
simplicity.

In other words, we will say that a system of permutations on
the edges of a simplex is acyclic if there is not a cycle of the form
a...b, a...b, ..., a...b.

Theorem 3.13. Let S be a fine mixed subdivision of n∆d−1. Then,
the system of colors CS is acyclic.

Proof. The case d = 1, 2 are trivial. The case d = 3 was already
proved before in Theorem 3.1. Now, let’s assume the result is true
for all d < k; suppose there exist a fine mixed subdivision S of
n∆k−1 such that the corresponding system of colors CS is not acyclic.
Then, there exist a, b ∈ [n] such that the graph Gab has a cycle
d1 → ...→ dm → d1.
Case 1: Suppose m < k. If we take U = {Ad1 , ..., Adm}, then CS|U
is not acyclic where S|U is a fine mixed subdivision of n∆|U |−1 with
|U | < k, which contradicts our assumption.
Case 2: Suppose m = k ≥ 4. If Ad1Adm−1 is of the form ...a...b...
then we have a cycle d1 → dm−1 → dm → d1. On the other hand,
if Ad1Adm−1 is of the form ...b...a... then we have a cycle d1 → ...→
dm−1 → d1. In both situations we use case 1 to get a contradiction.

We end this section by describing the behavior of a generic pseudo
tropical hyperplane arrangement at infinity. Generic arrangements
of n tropical hyperplanes in the tropical space of dimension d−1 are
in bijective correspondence [4] with regular fine mixed subdivisions
of the dilated simplex n∆d−1. In general, we define generic arran-
gements of n tropical pseudo-hyperplanes in the tropical space of
dimension d−1 as the coloring of a fine mixed subdivision (possible
non regular) of n∆d−1. Theorem 3.13 says that such arrangements
behave in an acyclic way at infinity. The following conjecture pre-
dicts that any acyclic behavior can be represented as the system of
colors of a pseudo tropical hyperplane arrangement.

Conjecture 3.14. Every acyclic system C on the edges of n∆d−1

is achievable as the system of colors of a fine mixed subdivision.
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We have already proved in Theorem 3.1 that Conjecture 3.14 is
true in the case of acyclic systems on the edges of an equilateral
triangle n∆2. A proof of this conjecture would give as a simple way
of constructing fine mixed subdivisions to make progress towards
Conjecture 2.2. Indeed, in section 6 we prove Conjecture 3.14 for
the special case of acyclic systems on the edges of 3∆d−1, a simplex of
size three in any dimension, and use it in order to prove Conjecture
2.2 also for simplices of size three in any dimension.

4 Dual systems and dual subdivisions

4.1 Dual systems

Every pair of numbers i, j ∈ [n] of an acyclic system C of n∆d−1

determine an acyclic orientation Gij on the edges of the complete
graph Kd. On the other hand, for any acyclic orientation G of Kd

one can define the permutation P (G) = k1...kd, where km is the
vertex of G with d−m outgoing arrows. It is easy to check that this
determines a bijection between acyclic orientations of the complete
graph Kd and permutations of the set [d]. This biection gives us a
form of duality for acyclic systems of permutations.

Definition 4.1. Let C be an acyclic system on the edges of n∆d−1.
Define C∗ be a system on the edges of d∆n−1 such that the permu-
tation on the edge ij is equal to P (Gij).

Proposition 4.2. The permutation AB is of the form ...i...j... in
system C if and only if the permutation ij is of the form ...A...B...
in system C∗.

Proof. The permutation on the edge AB is of the form ...i...j... if
and only if the graph Gij contains an arrow from A to B, if and
only if the permutation ij is of the form ...A...B....

Proposition 4.3. The system C∗ is acyclic and (C∗)∗ = C

Proof. Suppose C∗ has a cycle ..A...B.., ..A...B.., ..., ..A...B.. passing
through the vertices i1, ..., ir. Then, the permutation AB is of the
form ..i1...i2...ir...i1.. which is a contradiction. Thus, C∗ is an acyclic,
and we can define the system (C∗)∗ on the edges of n∆d−1; let AB′

be the permutation of (C∗)∗ on the edge AB. Then, the permutation
AB is of the form ...i...j... in system C if and only if the permutation
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ij is of the form ...A...B... in system C∗ if and only if the permutation
AB′ is of the form ...i...j... in system (C∗)∗. The result follows from
this.

4.2 Dual subdivisions

We start by recalling the one-to-one correspondence between fine
mixed subdivisions of n∆d−1 and triangulations of the polytope
∆n−1 × ∆d−1. This equivalent point of view has the drawback of
bringing us to a higher-dimensional picture. Its advantage is that it
simplifies greatly the combinatorics of the tiles, which are now just
simplices. Let v1, ..., vn and w1, ..., wd be the vertices of ∆n−1 and
∆d−1, so that the vertices of ∆n−1 ×∆d−1 are of the form vi × wj.
A triangulation T of ∆n−1 × ∆d−1 is given by a collection of sim-
plices. For each simplex t in T , consider the fine mixed cell whose
i-th summand is wawb...wc , where a, b,..., c are the indexes j such
that vi × wj is a vertex of t. These fine mixed cells constitute the
fine mixed subdivision of n∆d−1 corresponding to T . This bijection
is only a special case of the more general Cayley trick, which is dis-
cussed in detail by Santos in a very nice paper [2].
For instance, Figure 12 shows a triangulation of the triangular prism
∆1×∆2 = 12×ABC, and the corresponding fine mixed subdivision
of 2∆2 , whose three tiles are ABC + B, AC + AB, and C + ABC.

B

2C

C

2B

1C

1A

2A

1B

A

Figure 12: The Cayley Trick

This bijection gives us a form of duality for fine mixed subdivi-
sions of simplices. This duality exist for triangulations of products of
two simplices [2]. Since triangulations of ∆n−1×∆d−1

∼= ∆d−1×∆n−1

are in canonical bijection with fine mixed subdivisions of n∆d−1 and
fine mixed subdivisions of d∆n−1. One can then guess how the con-
cept of duality should be defined for fine mixed subdivisions.

Definition 4.4. Let S be a fine mixed subdivision of n∆d−1. Via
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the Cayley trick, it has a corresponding triangulation of ∆n−1 ×
∆d−1

∼= ∆d−1 × ∆n−1. S∗ is the fine mixed subdivision of d∆n−1

associated to the triangulation of ∆d−1 × ∆n−1 above. It is clear
that (S∗)∗ = S. Combinatorially, if we think of S as a collection of
n-tuples Z = (Z1, ..., Zn) and we define Z∗ = (ZA1 , ..., ZAd

), where
ZAk

= {i| Ak ∈ Zi}. Then S∗ = {Z∗| Z ∈ S}. Figure 13 shows
an example of a subdivision of 3∆4−1, its dual subdivision of 4∆3−1

and the Minkowski sums of the full dimensional cells.

5 Deletion and Contraction

In this section we introduce operations deletion and contraction first
studied by Santos in [2] and Ardila-Develin in [3]. Then, we define
operations deletion and contraction of a system of permutations on
the edges of a simplex and study some properties that are similar
to the ones that appear in Matroid Theory.

5.1 Deletion and Contraction of a fine mixed subdivision

Definition 5.1. Let S be a fine mixed subdivision of n∆d−1 and
i ∈ [n]. The deletion S\i is the set with elements the n-tuples
obtained by deleting the i-component of the elements of S.

Proposition 5.2. S\i is a fine mixed subdivision of (n− 1)∆d−1.

Proof. Via the Cayley trick, consider the triangulation of ∆n−1 ×
∆d−1 corresponding to S. Then S\i corresponds to the restriction
of such triangulation over ∆n−2 ×∆d−1, where the first component
∆n−2 is the simplex with vertices at 1, ..., î, ..., n. Then, S\i is a fine
mixed subdivision of (n− 1)∆d−1.

Definition 5.3. Let S be a fine mixed subdivision of the simplex
n∆d−1 with vertices A1, ..., Ad. The contraction S/Ai

is the set com-
posed by the elements of S that are written without the letter Ai

Geometrically, the contraction S/Ai
is the restriction of the fine

mixed subdivision S over the facet of n∆d−1 that does not contain
the vertex Ai.

Proposition 5.4. The contraction S/Ai
is the set of Minkowski

sums of a fine mixed subdivision of n∆d−2 with vertices at A1, ..., Âi, ..., Ad.
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Proof. Via the Cayley trick, consider the triangulation of ∆n−1 ×
∆d−1 corresponding to S. Then S/Ai

corresponds to the restriction
of such triangulation over ∆n−1×∆d−2, where the second component
∆d−2 is the simplex with vertices at A1, ..., Âi, ..., Ad. Then, S/Ai

is
the set of Minkowski sums a fine mixed subdivision of n∆d−2 with
vertices at A1, ..., Âi, ..., Ad.

5.2 Deletion and Contraction of an acyclic system

Definition 5.5. Let C be an acyclic system on the edges of n∆d−1

and i ∈ [n]. The deletion C\i is the acyclic system on the edges of
(n − 1)∆d−1 which is obtained by deleting the number i from each
permutation.

Proposition 5.6. If C = CS is the system of colors of a fine mixed
subdivision S, then C\i = CS\i.

Proof. Recall that the permutation on the edge Ad1Ad2 of the system
CS\i is defined by Ad1Ad2(j) equal to the coordinate that is equal to
Ad1Ad2 of the unique element of S that is written using only letters
Ad1 , Ad2 and has exactly j letters equal to Ad2 . Since the elements
of S\i have coordinates 1, .., î, ..., n, then the system CS\i can be
obtained just by deleting the number i from all the permutations of
C. Therefore, C\i = CS\i .

Definition 5.7. Let C be an acyclic system on the edges of n∆d−1

and i ∈ [d]. The contraction C/Ai
is the acyclic system on the edges

of n∆d−2 equal to the restriction of the system C to the edges of the
facet of n∆d−1 which does not contain the vertex Ai.

Proposition 5.8. If C is the system of colors of a fine mixed sub-
division S, then C/Ai

is the system of colors of the fine mixed sub-
division S/Ai

.

The following proposition tells us that Deletion and Contraction
are dual to each other.

Proposition 5.9. Let S and C be a subdivision and an acyclic
system of n∆d−1 respectively, then the following properties hold:

1. (C\i)
∗ = C∗/i

2. (C/Ai
)∗ = C∗\Ai
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3. (S\i)
∗ = S∗/i

4. (S/Ai
)∗ = S∗/Ai

Proof. 1. Every pair of numbers j1, j2 ∈ [n]\i of the acyclic systems
C\i of (n − 1)∆d−1 and C of n∆d−1 determine the same acyclic
orientation Gj1j2 of the complete graph Kd. Therefore, if j1, j2 6= i
the permutation j1j2 of (C\i)

∗ is equal to the permutation j1j2 of
C∗. Thus, it is clear that (C\i)

∗ = C∗/i.
Property 2. follows from 1. And properties 3 and 4 follow from
the the interpretation of deletion and contraction via the Cayley
trick.

Proposition 5.10. CS
∗ = CS∗

Proof. Let S be a fine mixed subdivision of n∆d−1. The result is
equivalent to prove that the permutation associated to Gij(CS) is
equal to the permutation ij of CS∗ for all 1 ≤ i, j ≤ n. Note that
Gij(CS) = Gij(CS\{1...̂i...ĵ...n}

). On the other hand, permutation ij of

CS∗ is equal to CS∗
/{1...̂i...ĵ...n}

= C(S\{1...̂i...ĵ...n})
∗ . Therefore the result

is equivalent to prove that Gij(CeS) is equal to the permutation ij

of CeS∗ , where S̃ = S\{1...̂i...ĵ...n}. Since S̃ is a subdivision of 2∆d−1,
it is enough to prove the proposition for fine mixed subdivisions S
of 2∆d−1. It is not hard to see that they are of the form:

1 2
A1A2A3...Ad + A1

A2A3...Ad + A1A2

A3...Ad + A1A2A3
...

...
Ad + A1A2A3...Ad

with corresponding dual subdivision S∗ of d∆1:

A1 A2 A3 · · · Ad

12 + 1 + 1 + · · · + 1
2 + 12 + 1 + · · · + 1
2 + 2 + 12 + · · · + 1
...

...
...

...
2 + 2 + 2 + · · · + 12
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And then, (CS)∗ = CS∗ = G12 = A1A2...Ad.

The proof of this proposition also allow us to calculate in a very
easy way the system of colors associated to a fine mixed subdivision
in terms of the dual subdivision. We do not get into details but say
that the use of dual subdivisions and dual systems of permutations
give us an other point of view for understanding the properties of
such subdivisions, for which in many cases arise difficult questions
that are easier to answer by thinking on the dual problem instead
of thinking on the problem by itself. Indeed, the following section
is a clear example of it.

!"

1

2
3

a

b

c

d

ABCD + A + A
BCD + A + AB
CD + AC + AB
D + ACD + AB

BCD + AB + B
CD + ABC + B
CD + C + ABC
D + CD + ABC
D + D + ABCD
D + ABCD + B

123 + 1 + 1 + 1
23 + 13 + 1 + 1
23 + 3 + 12 + 1
23 + 3 + 2 + 12
2 + 123 + 1 + 1
2 + 23 + 12 + 1
3 + 3 + 123 + 1
3 + 3 + 23 + 12
3 + 3 + 3 + 123
2 + 23 + 2 + 12

Figure 13: Subdivision of 3∆4−1, its dual subdivision of 4∆3−1 and Minkowski
sums of the full dimensional cells.
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6 Applications

6.1 Forward direction of Ardila-Billey’s Conjecture

Now we are interested in the relationship between system of colors
on the edges of a simplex and positions of the simplices of any sub-
division achieving it. Such subdivisions are not necessarily unique,
however the positions of the simplices are completely determined.
Every pair of colors i, j define an acyclic orientation Gij of the com-
plete graph Kd; this acyclic orientation has an unique source that is
precisely the relative position of the simplex i with respect to j. It
can be formally expressed as follows:

Theorem 6.1. Let S be a fine mixed subdivision of n∆d−1. Then,
the Minkowski sum corresponding to simplex i has i-component equal
to A1...Ad and j-component equal to the source of Gij(CS) for all
j 6= i.

Proof. Consider the dual subdivision S∗ of S. The simplex i has
i-component A1 . . . Ad, and so, its dual cell contains the number i
in all components Ar, for all 1 ≤ r ≤ d. Therefore, the dual cell of
the simplex i is the full dimensional cell of the subdivision S∗ which
is the closest one to the vertex i of d∆n−1. This dual cell is then
completely determined by the adjacent colors of the vertex i that
are precisely the sources of Gij(CS) with j 6= i. More explicitly, its
Minkowski sum has Ar-component equal to {j ∈ [n] : j = i or Gij =
Ar}. The result follows from dualizing again.

This is a powerful theorem that allows us to determine the posi-
tions of the simplices and more general, the corresponding Minkowski
sums of the simplices just by using the system of colors. For in-
stance, in the first example of Figure 14, 1 is in positions C and
B with respect to 2 and 3, then the simplex 1 correspond to the
Minkowski sum containing C and B in the second a third compo-
nents respectively, thus 1 = ABC + C + B and so on.

Now, we define TC be the table which has as rows the positions
determined by an acyclic system of colors C. The table of the ex-
ample in Figure 14 is ABC C B

A ABC B
A C ABC
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3
1

2 3

1

2

1

3

2 3

A

B C

ABC + C + B
A + ABC + B
A + C + ABC

1
2
3

1 = ABCD + A + A
2 = D + ABCD + B
3 = D + D + ABCD

A

B
C

D

!"

B

A

C

D
A

B
C

D

A

B
C

D

G12 G13 G23

1

2
3

1
2

3

1 1

1

2

2

2

3

3

3

G12 G13 G23

1

1 1

2

2

23

3

Figure 14: Acyclic orientations G12, G13 and G23 of subdivisions of 3∆2 and
3∆3 together with the corresponding positions of the simplices.

We will make an arrow i→ j, from i to j (i 6= j) of type Ad1Ad2

if there is an Ad1 in the row i and an Ad2 in the row j so that they
are in the same column, here d1 6= d2.

Lemma 6.2. Let T be the table of positions given by an acyclic
system. Then, there is not a cycle i1 → i2 → ... → ir → i1 of type
Ad1Ad2 for any d1, d2 ∈ [d].

Proof. First we are going to prove that if there is an arrow i → j
from i to j of type Ad1Ad2 , then the permutation of colors on the
edge Ad1Ad2 (reading from vertex Ad1 to Ad2) is something of the
form ...i...j.... Suppose there is an arrow from i to j of type Ad1Ad2 ,
i.e there is a column k such that Ad1 ∈ Tik and Ad2 ∈ Tjk.
Case 1: Suppose k = j. Then Tij = Ad1 which means that the
graph Gij has a source at Ad1 , and so the permutation on the edge
Ad1Ad2 is of the form ...i...j....
Case 2: If k = i, it is similar to case 1.
Case 3: Suppose k 6= i, j. Then Tik = Ad1 and Tjk = Ad2 , which
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means that the graphs Gik and Gjk have sources at Ad1 and Ad2

respectively. Thus, the permutation on the edge Ad1Ad2 is of the
form ...i...k...j... as we wanted.
Finally, we can not have a cycle i1 → i2 → ... → ir → i1 of type
Ad1Ad2 , otherwise the permutation on the edge Ad1Ad2 is of the form
...i1...i2...ir...i1 which is a contradiction.

The following result is another proof of the forward direction of
Conjecture 2.2 of Ardila-Billey proved first by Ardila-Billey, Propo-
sition 8.2.b in [1], and now proved using the language of system of
colors of fine mixed subdivisions.

Theorem 6.3 (Forward direction of Ardila-Billey’s conjecture). Let
P be the set of positions of the simplices in a fine mixed subdivision of
n∆d−1, then every sub-simplex of size k contains at most k elements
of P .

Proof. Suppose we have a fine mixed subdivision of n∆d−1 with
vertices A1, ..., Ad and positions of simplices at P , such that there is
a sub-simplex of size k containing more than k simplices of P . Let TP

be the table that has as rows the Minkowski sums of the simplices of
P ; we can assume that the first rows of TP (rows in the small square
in Figure 15) are those corresponding to the saturated (more than
k) simplices contained in a sub-simplex of size k: Ta1...ad

= {x =
(x1 . . . xd) ∈ Rd : xi ≥ ai and x1 + . . . xd = 1} for some non negative
integers a1 + ... + ad = n− k. Thus, each one of these more than k
first rows satisfies that they contain (off of the diagonal) at least a1

letters A1,..., and at least ad letters Ad.
Figure 15 represents the table of positions associated to the posi-

tions of the simplices and is composed by one white square, one dark
rectangle and one white rectangle. We will prove that there are at
least am letters of Am on the first row that are in the dark rectangle.
For simplicity, let’s call a = am and A = Am; if a = 0 it is obvious.
Suppose a > 0, if there is not any A on the intersection of first row
with the white square, then the first row contains at least a letters
A on the dark rectangle for free. Now suppose there is a letter A
on the first row which is in the white square (off of the diagonal),
then we can make arrows 1 = i1 → ... → ir of type AAk for any
k = 1, ..., d with Ak 6= A, on the following way: start by making an
arrow from 1 = i1 → i2 of type AAk, where i2 is the number of the
column of the first letter A in consideration (this is possible because
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AA...A

>k < n-k

A

A

A

i1

, i2

, ..., ir AA...A

Figure 15: Table of positions

A is a letter in the row i1, Ak is a letter in the row i2, and they are in
the same column i2). Then, if there is a letter A in row i2, column i3
(i3 6= i2) which is in the white square then we keep making an arrow
i2 → i3 of type AAk on the same way as before. Since the table
does not have any cycle of type AAk then it is impossible to keep
doing the process forever, and so we stop in some row ir containing
all the letters A (at least a) in the dark rectangle. Now look at the
letters in the first row that are exactly above of these letters A, if
some of those letters is equal to B 6= A, the table contains a cycle of
type AB which is a contradiction. Therefore, the first row contains
at least a letters A on the first row which are in the dark rectangle
of the figure.
Now we finish the proof saying that the dark rectangle of the figure
contains less than n − k columns and in its first row it contains at
least a1 letters A1,..., and at least ad letters Ad which add up to at
least n− k letters, which is a contradiction.

6.2 Ardila-Billey’s conjecture for simplices of size three in
every dimension

The following theorem is a special case of Conjecture 3.14.

Theorem 6.4. Every acyclic system of 3∆d−1 is achievable as the
system of colors of a fine mixed subdivision.
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Proof. Let C be an acyclic system of 3∆d−1. We proved in Theorem
3.1 that all acyclic systems of d∆3−1 are achievable as the system of
colors of a fine mixed subdivision. Let S∗ be a subdivision of d∆3−1

with corresponding system equal to C∗. The subdivision S = (S∗)∗

is a fine mixed subdivision of 3∆d−1 with corresponding system equal
to C.

The following theorem is a special case of Conjecture 2.2 of
Ardila-Billey.

Theorem 6.5. Ardila-Billey’s conjecture is true for simplices of size
3 in every dimension, i.e the possible positions of the three simplices
in a fine mixed subdivision of 3∆d−1 are precisely those for which
every sub-simplex of size 2 contains at most 2 of them.

Proof. We already proved the forward direction in Theorem 6.3. For
the backward direction, we will construct dual acyclic systems on
the edges of the triangle d∆3−1, that give rise to all the possible set
of positions satisfying the conditions of the theorem. For simplicity,
we will call A, B, ..., H the d vertices of the simplex 3∆d−1. The
Minkowski sums of the simplices in a fine mixed subdivision of 3∆d−1

have three components: one equal to AB...H, and the other two
components are composed just by one letter each one; these last two
letters determine the position of the simplices and they are shown
on the left hand side of the triangles in Figure 16. Note that a set of
three pairs of letters determine positions of simplices satisfying the
conditions of the theorem if and only if there is not one letter that
is in the three pairs. Figure 16 shows all the possible sets of three
pairs which give rise to positions of simplices satisfying conditions of
the theorem (up to relabeling), it also shows dual systems C∗ with
such sets as adjacent colors of the vertices. Let C = (C∗)∗ be an
acyclic system of 3∆d−1, and let S be a fine mixed subdivision of
3∆d−1 having system of colors equal to C. Therefore, the positions
of the simplices of S are precisely the positions showed in Figure 16
(Theorem 6.1).
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Figure 16: Possible positions of the simplices in a fine mixed subdivision of
3∆d−1 and dual acyclic systems (not unique) which generate such positions.
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