MATH 1300 A, Fall 2013 Solution Midterm 1

Show all work clearly and in order. Justify your answers whenever possible. No calculators or books are allowed. You have 50 minutes.

1. (10 points) For each of the following graphs determine if it is the graph of a function. Mark yes or not.

2. (10 points) Determine the largest domain for which the following formula determines a function:

$$f(x) = \frac{\sqrt{9 - x^2}}{x^2 - 1}$$

The domain of f is the set of values of x for which $9 - x^2 \ge 0$ and $x^2 - 1 \ne 0$. This happens when $-3 \le x \le 3$ and $x \ne -1, 1$. Therefore

Domain
$$f = [-3, -1) \cup (-1, 1) \cup (1, 3]$$

3. (20 points) Consider the function $f(x) = \frac{5x+4}{x+3}$.

(a) Is f one-to-one? Yes

The function f is one-to-one if $f(x_1) = f(x_2)$ implies $x_1 = x_2$.

$$\frac{5x_1+4}{x_1+3} = \frac{5x_2+4}{x_2+3} \implies (5x_1+4)(x_2+3) = (5x_2+4)(x_1+3)$$

$$5x_1x_2 + 15x_1 + 4x_2 + 12 = 5x_1x_2 + 15x_2 + 4x_1 + 12$$

$$15x_1 + 4x_2 = 15x_2 + 4x_1$$

$$11x_1 = 11x_2$$

$$x_1 = x_2$$

(b) Find a formula for the inverse of f.

$$y = \frac{5x+4}{x+3} \implies (x+3)y = 5x+4 xy+3y = 5x+4 xy-5x = 4-3y x(y-5) = 4-3y x = \frac{4-3y}{y-5}$$

Thus, $f^{-1}(y) = \frac{4-3y}{y-5}$. Changing the variables y for x, we obtain that the inverse of f is

$$f^{-1}(x) = \frac{4 - 3x}{x - 5}$$

(c) Find the domain and the range of f^{-1} .

Domain
$$f^{-1} = (-\infty, 5) \cup (5, \infty)$$

Range f^{-1} = Domain $f = (-\infty, -3) \cup (-3, \infty)$

- 4. (20 points) Evaluate each of the following:
- (a) $\sin(\frac{2\pi}{3})$

$$\sin(\frac{2\pi}{3}) = \sin(\pi - \frac{2\pi}{3}) = \sin(\frac{\pi}{3}) = \frac{\sqrt{3}}{2}$$

(b) $\cos(\operatorname{arcsec} 4)$

If $\theta = \operatorname{arcsec} 4$, then $\sec \theta = \frac{1}{\cos \theta} = 4$. Then, $\cos \theta = \frac{1}{4}$. Thus $\cos(\operatorname{arcsec} 4) = \frac{1}{4}$

(c) Assume x > 0. Find $\cos(\operatorname{arccot} \frac{x}{x+1})$.

If x > 0 and $\theta = \operatorname{arccot} \frac{x}{x+1}$ then we can compute all trigonometric functions of θ from the triangle above. In particular, $\cos \theta = \frac{x}{\sqrt{2x^2+2x+1}}$. Thus,

$$\cos(\operatorname{arccot} \frac{x}{x+1}) = \frac{x}{\sqrt{2x^2 + 2x + 1}}$$

5. (20 points) Find the following limits:

(a)
$$\lim_{x \to \infty} \frac{1}{x} \cos x = \mathbf{0}$$
$$-\frac{1}{x} \le \frac{1}{x} \cos x \le \frac{1}{x}$$

Since $\lim_{x\to\infty} -\frac{1}{x} = \lim_{x\to\infty} \frac{1}{x} = 0$, by the pinching theorem we obtain

$$\lim_{x \to \infty} \frac{1}{x} \cos x = 0$$

(c)
$$\lim_{x \to \infty} x \sin(\frac{1}{x}) = 1$$

 $\lim_{x \to \infty} x \sin(\frac{1}{x}) = \lim_{x \to \infty} \frac{\sin(\frac{1}{x})}{\frac{1}{x}} = 1$

6. (10 points) Sketch the graph of $f(x) = x \sin(\frac{1}{x})$

The graph of f lies between y = -x and y = x. Moreover,

$$\lim_{x \to \infty} x \sin(\frac{1}{x}) = \lim_{x \to -\infty} x \sin(\frac{1}{x}) = 1,$$

so the graph approaches the line y = 1 as x goes to infinity.

7. (10 points) Start with the approximation $2 < \sqrt{7} < 3$. Apply the bisection method once to obtain a better approximation of $\sqrt{7}$.

Let $f(x) = x^2 - 7$. Note that f(2) = -3 < 0, and that f(3) = 2 > 0. Then $2 < \sqrt{7} < 3$. The midpoint of the interval [2, 3] is 5/2. Observe that

$$f(5/2) = \left(\frac{5}{2}\right)^2 - 7 = -\frac{3}{4} < 0.$$

Since f is continuous, the intermediate value theorem guaranties that the root $\sqrt{7}$ of f is between 5/2 and 3:

$$5/2 < \sqrt{7} < 3$$