MATH 1300 A, Fall 2013 Solution Midterm 2

Show all work clearly and in order. Justify your answers whenever possible. No calculators, cellphones or books are allowed. You have 50 minutes.

1. (10 points) Use the definition of the derivative to find the derivative of $f(x) = x^2 + 1$.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

=
$$\lim_{h \to 0} \frac{((x+h)^2 + 1) - (x^2 + 1)}{h}$$

=
$$\lim_{h \to 0} \frac{x^2 + 2xh + h^2 + 1 - x^2 - 1}{h}$$

=
$$\lim_{h \to 0} \frac{2xh + h^2}{h}$$

=
$$\lim_{h \to 0} (2x+h)$$

=
$$2x$$

2. (15 points) Find the second derivative of $\arcsin(2x^3)$

Let $f(x) = \arcsin(2x^3)$. We have

$$f'(x) = \frac{1}{\sqrt{1 - (2x^3)^2}} \cdot 6x^2 = \frac{6x^2}{\sqrt{1 - 4x^6}}$$

Hence

$$f''(x) = \frac{12x \cdot \sqrt{1 - 4x^6} - 6x^2 \cdot \frac{1}{2}(1 - 4x^6)^{-\frac{1}{2}}(-24x^5)}{1 - 4x^6}$$
$$= \frac{12x(1 - 4x^6) - 3x^2(-24x^5)}{(1 - 4x^6)^{\frac{3}{2}}}$$
$$= \frac{12x - 48x^7 + 72x^7}{(1 - 4x^6)^{\frac{3}{2}}}$$
$$= \frac{12x + 24x^7}{(1 - 4x^6)^{\frac{3}{2}}}$$

3. (15 points) Find the equation of the tangent line to the implicitly defined function $4x^3y^2 - 2x^2y^3 = 24$ at the point (2, 1).

The equation of the tangent line to the graph of the function y = f(x) implicitly defined by the formula above at the point (x, y) = (2, 1) is given by

$$y = f'(2)(x - 2) + f(2) = f'(2)(x - 2) + 1$$

To find the implicit derivative of y = f(x) in terms of (x, y) we differentiate both sides of the equation:

$$\frac{d}{dx}(4x^3y^2 - 2x^2y^3) = \frac{d}{dx}(24)$$
$$12x^2y^2 + 8x^3yy' - 4xy^3 - 6x^2y^2y' = 0$$

Replacing (x, y) = (2, 1) we get

$$48 + 64y' - 8 - 24y' = 0$$
$$40y' + 40 = 0$$
$$y' = -1$$

Therefore, f'(2) = -1. Hence, the equation of the tangent line at (x, y) = (2, 1) is

$$y = -(x - 2) + 1 = -x + 3$$

4. (15 points) Find the critical points of the function $f(x) = (3x^2 - 3x - 6)^{\frac{2}{3}}$. Identify each of them as a local maximum, a local minimum or a non-local extremum.

The critical points of the function f are the values of x for which f'(x) is equal to zero or does not exist.

$$f'(x) = \frac{2}{3}(3x^2 - 3x - 6)^{-\frac{1}{3}} \cdot (6x - 3)$$
$$= \frac{2(2x - 1)}{(3x^2 - 3x - 6)^{\frac{1}{3}}}$$
$$= \frac{2(2x - 1)}{(3(x - 2)(x + 1))^{\frac{1}{3}}}$$

Hence, the critical points are $x = \frac{1}{2}$, x = 2, and x = -1. Analyzing the sign of f' we get

$$f': ----(x=-1) ++++ (x=1/2) ---- (x=2) ++++$$

decreasing increasing decreasing increasing

So x = -1 is a local minimum, x = 1/2 is a local maximum, and x = 2 is a local minimum.

5. (15 points) Give an example of a continuos function which does not satisfy the conclusion of the Rolle's Theorem. Explain why.

The function f(x) = |x| with domain [-1, 1] does not satisfy the conclusion of the Rolle's Theorem. Although f(-1) = f(1), there is no point between -1 and 1 where the derivative is equal to zero (or where the tangent line to the graph of f is horizontal). The Rolle's Theorem does not apply to this function because it is not differentiable at x = 0.

6. (15 points) Find the unique function f which satisfies $f'(x) = 3 \sec^2 x$ and f(0) = 3.

The function f should be of the form

$$f(x) = 3\tan x + k$$

for some constant k. Since f(0) = k = 3, then

$$f(x) = 3\tan x + 3$$

7. (15 points) Sketch the graph of the function $f(x) = \frac{x^2-4}{x^2-1}$.

- The intercepts of the function are: x-intercepts: x = 2 and x = -2y-intercept: y = f(0) = 4
- The asymptotes are: vertical asymptotes: x = 1 and x = -1horizontal asymptote: y = 1. This is because

$$\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(x) = 1.$$

• The first derivative is:

$$f'(x) = \frac{2x(x^2 - 1) - 2x(x^2 - 4)}{(x^2 - 1)^2} = \frac{6x}{(x^2 - 1)^2}$$

The critical points of the function are: x = 0, x = 1 and x = -1. Analyzing the sign of the derivative we get

$$f': --- (x = -1) --- (x = 0) +++ + (x = 1) +++ +$$

decreasing decreasing increasing increasing

So, x = 0 is a local minimum. Around the other two critical points there is no change of sign, so they are non-local extrema.

• Concavity and inflection points: The second derivative of the function f is

$$f''(x) = \frac{6(x^2 - 1)^2 - 6x \cdot 2(x^2 - 1)2x}{(x^2 - 1)^4} = \frac{6(x^2 - 1) - 24x^2}{(x^2 - 1)^3} = -\frac{6 + 18x^2}{(x^2 - 1)^3}$$

The numerator of f'' is always positive. So, analyzing the sign of f'' we get:

Putting all information together, we deduce that the graph of the function is

