MATH 1300 A, Fall 2013

Solution Midterm 3

Show all work clearly and in order. Justify your answers whenever possible. No calculators, cellphones or books are allowed. You have 50 minutes.

1. (20 points) Evaluate the following limits:
(a) $\lim _{x \rightarrow 0} \frac{x-\sin x}{x-\tan x}$

When we evaluate $x=0$ we get $\frac{0}{0}$, so we can apply L'Hopital's rule:

$$
\lim _{x \rightarrow 0} \frac{x-\sin x}{x-\tan x}=\lim _{x \rightarrow 0} \frac{1-\cos x}{1-\sec ^{2} x}
$$

Simplifying we get:

$$
\lim _{x \rightarrow 0} \frac{x-\sin x}{x-\tan x}=\lim _{x \rightarrow 0} \frac{1-\cos x}{\frac{\cos ^{2} x-1}{\cos ^{2} x}}=\lim _{x \rightarrow 0}-\frac{\cos ^{2} x}{\cos x+1}=-\frac{1}{2}
$$

(b) $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\tan (3 x)}{\tan (5 x)}$

Before applying L'Hopital's rule it is convenient to simplify this limit:

$$
\lim _{x \rightarrow \frac{\pi}{2}} \frac{\tan (3 x)}{\tan (5 x)}=\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin (3 x)}{\sin (5 x)} \cdot \frac{\cos (5 x)}{\cos (3 x)}=\frac{-1}{1} \lim _{x \rightarrow \frac{\pi}{2}} \frac{\cos (5 x)}{\cos (3 x)}=-\lim _{x \rightarrow \frac{\pi}{2}} \frac{\cos (5 x)}{\cos (3 x)}
$$

When we evaluate $x=\frac{\pi}{2}$ we get $\frac{0}{0}$, so we can apply L'Hopital's rule:

$$
-\lim _{x \rightarrow \frac{\pi}{2}} \frac{\cos (5 x)}{\cos (3 x)}=-\lim _{x \rightarrow \frac{\pi}{2}} \frac{-\sin (5 x) \cdot 5}{-\sin (3 x) \cdot 3}=-\frac{-5}{3}=\frac{5}{3}
$$

(c) $\lim _{x \rightarrow 1} \frac{x^{3}+x^{2}-2 x+1}{x^{2}-1}$

When we evaluate $x=1$ we get $\frac{1}{0}$. In particular, we can not apply L'Hopital's rule. In fact, this limit does not exist. The two side limits are:

$$
\lim _{x \rightarrow 1^{-}} \frac{x^{3}+x^{2}-2 x+1}{x^{2}-1}=-\infty \quad \lim _{x \rightarrow 1^{+}} \frac{x^{3}+x^{2}-2 x+1}{x^{2}-1}=\infty
$$

(d) $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
2. (20 points) Water is leaking out of a conical cup of height 8 centimeters and radius 4 centimeters. Find the rate of change of the height of water in the cup at the instant that the cup is full, if the volume is decreasing at a constant rate of 8 cubic centimeters per second.

$$
\begin{gathered}
V=\frac{1}{3} \pi r^{2} h \\
\frac{r}{4}=\frac{h}{8} \Rightarrow r=\frac{h}{2}
\end{gathered}
$$

We are given that $\frac{d V}{d t}=8 \mathrm{~cm}^{3} / \mathrm{sec}$, and are asked to find $\frac{d h}{d t}$ when $h=8 \mathrm{~cm}$. Replacing the formula for the radius r in the formula for the volume we get

$$
V=\frac{1}{12} \pi h^{3}
$$

Taking the derivative with respect to time we get

$$
8=\frac{1}{4} \pi h^{2} \frac{d h}{d t}
$$

When $h=8$ we get

$$
8=\frac{1}{4} \pi 8^{2} \frac{d h}{d t} \Rightarrow \frac{d h}{d t}=\frac{1}{2 \pi} \mathrm{~cm} / \mathrm{sec}
$$

3. (15 points) Let $f(x)=x^{2}+2$ and $P=\{-1,0,2,3,5\}$ be a partition of the interval $[-1,5]$. Find the lower Riemann sum $L(P, f)$ and the upper Riemann sum $U(P, f)$.

Lower Riemann Summ

Upper Riemann Sum

$$
\begin{gathered}
L(P, f)=2 \times 1+2 \times 2+6 \times 1+11 \times 2=34 \\
U(P, f)=3 \times 1+6 \times 2+11 \times 1+27 \times 2=80
\end{gathered}
$$

4. (20 points) Determine the value of each definite integral. In each case sketch the corresponding area. Do not use the fundamental theorem of calculus.
(a) $\int_{-4}^{2}(3 x+6) d x=\frac{4 \times 12}{2}-\frac{2 \times 6}{2}=24-6=18$

(b) $\int_{1}^{4} 6 d x=3 \times 6=18$

(c) $\int_{-2}^{2}-\sqrt{4-x^{2}} d x=-\frac{1}{2} \pi 2^{2}=-2 \pi$

(d) $\int_{-\pi}^{\pi} x^{4} \sin \left(\frac{1}{x^{3}}\right) d x=0$ because the function is odd.
5. (15 points) Find the area of the region between the graphs of $f(x)=x^{2}$ and $g(x)=2 x+15$. The intersection between the graphs of the two functions is attained when

$$
x^{2}-2 x-15=(x+3)(x-5)=0
$$

So the area of the region between the graphs is equal to

$$
\begin{aligned}
\int_{-3}^{5}(g(x)-f(x)) d x & =\int_{-3}^{5}\left(2 x+15-x^{2}\right) d x=x^{2}+15 x-\left.\frac{1}{3} x^{3}\right|_{-3} ^{5} \\
& =\left(5^{2}+15(5)-\frac{1}{3} 5^{3}\right)-\left((-3)^{2}+15(-3)-\frac{1}{3}(-3)^{3}\right)=127-\frac{125}{3} \\
& =\frac{256}{3}
\end{aligned}
$$

6. (15 points) An island is located 300 meters south of a straight east-west beach. A person on the beach 900 meters west of the island wants to go to the island. If this person runs at $5 \mathrm{~km} / \mathrm{hr}$ and swims at $4 \mathrm{~km} / \mathrm{hr}$, what is is the shortest possible time this person needs to go to the island?

The time $T(x)$ that the person needs to go to the island is given by the equation

$$
T(x)=\frac{x}{5000}+\frac{y}{4000}=\frac{x}{5000}+\frac{\sqrt{(900-x)^{2}+300^{2}}}{4000}
$$

The derivative of T is

$$
T^{\prime}(x)=\frac{1}{5000}+\frac{1}{4000} \cdot \frac{-2(900-x)}{2 \sqrt{(900-x)^{2}+300^{2}}}=\frac{1}{20000} \cdot \frac{4 \sqrt{(900-x)^{2}+300^{2}}-5(900-x)}{\sqrt{(900-x)^{2}+300^{2}}}
$$

This fraction is equal to zero only when the numerator is equal to zero:

$$
\begin{gathered}
4 \sqrt{(900-x)^{2}+300^{2}}-5(900-x)=0 \\
4 \sqrt{(900-x)^{2}+300^{2}}=5(900-x) \\
16(900-x)^{2}+16 \cdot 300^{2}=25(900-x)^{2} \\
16 \cdot 300^{2}=9(900-x)^{2} \\
4^{2} \cdot 100^{2}=(900-x)^{2} \\
400=(900-x) \\
500=x
\end{gathered}
$$

Therefore the shortest possible time the person needs is attained when $x=500$, which implies $y=500$. The shortest time is then equal to:

$$
T(500)=\frac{500}{5000}+\frac{500}{4000}=\frac{9}{40} \text { hours }=\frac{9}{40} \cdot 60 \text { minutes }=13.5 \text { minutes }
$$

