MATH 1300 A, Fall 2013

Solution Quiz 2

1. (50 points) Find each of the following angles:
$\arctan \left(-\frac{1}{\sqrt{3}}\right)=\quad \operatorname{arccot}\left(-\frac{1}{\sqrt{3}}\right)=$

First, we need to find an angle θ in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ for which $\tan \theta=-\frac{1}{\sqrt{3}}$.
From the $30-60-90$ triangle we know that $\tan \left(\frac{\pi}{6}\right)=\frac{1}{\sqrt{3}}$.
Therefore, $\tan \left(-\frac{\pi}{6}\right)=-\frac{1}{\sqrt{3}}$. Thus

$$
\arctan \left(-\frac{1}{\sqrt{3}}\right)=-\frac{\pi}{6}
$$

Second, we need to find an angle θ in $(0, \pi)$ for which $\cot \theta=-\frac{1}{\sqrt{3}}$.

From the 30-60-90 triangle we know that $\cot \left(\frac{\pi}{3}\right)=\frac{1}{\sqrt{3}}$.
Therefore, $\cot \left(\pi-\frac{\pi}{3}\right)=-\frac{1}{\sqrt{3}}$. Thus

$$
\operatorname{arccot}\left(-\frac{1}{\sqrt{3}}\right)=\pi-\frac{\pi}{3}=\frac{2 \pi}{3}
$$

2. (50 points) Find the following limits of the function whose graph is sketched below:

$\lim _{x \rightarrow 1^{-}} f(x)=1 \quad \lim _{x \rightarrow 1^{+}} f(x)=-1 \quad \lim _{x \rightarrow 1} f(x)=$ does not exist $\quad \lim _{x \rightarrow 4} f(x)=\infty \quad \lim _{x \rightarrow \infty} f(x)=0$
