MATH 1300 A, Fall 2013

Solution Quiz 3

1. (100 points) Find the equation of the tangent line to the graph of $f(x)$ at $x=1$ for

$$
f(x)=\sqrt{\frac{\sqrt{x}+11}{x^{3}+2}}
$$

The equation of the tangent line at $x=x_{0}$ is

$$
y=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

At $x=1$ we obtain

$$
f(1)=\sqrt{\frac{\sqrt{1}+11}{1^{3}+2}}=\sqrt{\frac{12}{3}}=\sqrt{4}=2
$$

The derivative of f is given by

$$
f^{\prime}(x)=\frac{1}{2 \sqrt{\frac{\sqrt{x}+11}{x^{3}+2}}} \cdot \frac{\frac{1}{2 \sqrt{x}}\left(x^{3}+2\right)-3 x^{2}(\sqrt{x}+11)}{\left(x^{3}+2\right)^{2}}
$$

We substitute $x=1$ and get

$$
\begin{aligned}
f^{\prime}(1) & =\frac{1}{2 \sqrt{\frac{\sqrt{1}+11}{1^{3}+2}}} \cdot \frac{\frac{1}{2 \sqrt{1}}\left(1^{3}+2\right)-3 \cdot 1^{2}(\sqrt{1}+11)}{\left(1^{3}+2\right)^{2}} \\
& =\frac{1}{4} \cdot \frac{\frac{3}{2}-36}{9}=-\frac{69}{72} \\
& =-\frac{23}{24}
\end{aligned}
$$

Replacing the values of $f(1)$ and $f^{\prime}(1)$, we obtain that the equation of the tangent line is

$$
y=2-\frac{23}{24}(x-1)=\frac{71}{24}-\frac{23}{24} x
$$

