MATH 1300 A, Fall 2013

Solution Quiz 6

1. (100 points) A spherical balloon is expanding in such a way that its volume is increasing at 6 cubic centimeters per second. Find the rate of increase of the surface area of the balloon when its volume is $36 \pi \mathrm{~cm}^{3}$.

The equations for the volume and the surface area of a sphere in terms of the radius are

$$
V=\frac{4}{3} \pi R^{3} \quad A=4 \pi R^{2}
$$

We are given that

$$
\frac{d V}{d t}=6 \mathrm{~cm}^{3} / \mathrm{sec}
$$

and we are ask to find $\frac{d A}{d t}$ when the volume is

$$
V=\frac{4}{3} \pi R^{3}=36 \pi \mathrm{~cm}^{3} .
$$

Solving this equation we find the radius of the balloon:

$$
R^{3}=\frac{(3)(36 \pi)}{4 \pi}=27 \quad \Rightarrow \quad R=3 \mathrm{~cm}
$$

In order find to rate of increase of the surface area we apply the chain rule:

$$
\frac{d A}{d t}=\frac{d A}{d R} \cdot \frac{d R}{d V} \cdot \frac{d V}{d t}=\frac{\frac{d A}{d R} \cdot \frac{d V}{d t}}{\frac{d V}{d R}}=\frac{8 \pi R \cdot 6}{4 \pi R^{2}}=\frac{12}{R}=\frac{12}{3}=4 \mathrm{~cm}^{2} / \mathrm{sec}
$$

