Exercise 1

Show that if a graph G has a bridge then G has no nowhere zero \mathbb{Z}_{n}-flow, that is, the flow counting function $\varphi_{G}(n)=0$.

Exercise 2

Find a formula for the flow counting function $\varphi_{G}(n)$ of the following graphs:
(i) a cycle with k nodes.
(ii) the graph consisting of two vertices and k (multiple) edges connecting them.
(iii) a complete graph with 4 nodes.

Exercise 3

Let $G=(V, E)$ be a bridgeless connected graph. Show that $\varphi_{G}(n)$ agrees with a polynomial with integer coefficients of degree $|E|-|V|+1$ and leading coefficient 1 .

Hint: Use a deletion-contraction argument.

Exercise 4

Show that the Petersen graph has no nowhere \mathbb{Z}_{4}-flow. Find a formula for its flow polynomial $\varphi_{G}(n)$.

