Exercise 1

Let Π be a finite poset. Show that the counting function

$$
\Omega_{\Pi}(n):=\mid\{\varphi: \Pi \rightarrow[n] \text { order preserving map }\} \mid
$$

agrees with a polynomial of degree $|\Pi|$ with rational coefficients (the order polynomial).

Exercise 2

Find the strict order polynomial $\Omega_{\Pi}^{\circ}(n)$ of the following posets.
(i) the poset D_{6} consisting of the elements [6] ordered by divisibility:

(ii) the poset whose Hasse diagram is a tree consisting of a root with k children. For example, for $k=3$:

(iii) the poset whose Hasse diagram is the complete bipartite graph $K_{3,3}$:

Exercise 3

Find the order polynomial $\Omega_{\Pi}(n)$ of the graphs in the previous exercise. Verify that the following combinatorial reciprocity holds:

$$
(-1)^{|\Pi|} \Omega_{\Pi}^{\circ}(-n)=\Omega_{\Pi}(n) .
$$

