Exercise 1

Let Π be a finite poset. Show that the counting function

 $\Omega_{\Pi}(n) := |\{\varphi: \Pi \to [n] \text{ order preserving map}\}|$

agrees with a polynomial of degree $|\Pi|$ with rational coefficients (the *order polynomial*).

Exercise 2

Find the strict order polynomial $\Omega^\circ_\Pi(n)$ of the following posets.

(i) the poset D_6 consisting of the elements [6] ordered by divisibility:

(ii) the poset whose Hasse diagram is a tree consisting of a root with k children. For example, for k = 3:

(iii) the poset whose Hasse diagram is the complete bipartite graph $K_{3,3}$:

Exercise 3

Find the order polynomial $\Omega_{\Pi}(n)$ of the graphs in the previous exercise. Verify that the following combinatorial reciprocity holds:

 $(-1)^{|\Pi|}\Omega^{\circ}_{\Pi}(-n) = \Omega_{\Pi}(n).$