Exercise 1

Let $\mathcal{S}=\operatorname{conv}\left\{\binom{a_{1}}{b_{1}},\binom{a_{2}}{b_{2}}\right\}$, with $a_{1}, a_{2}, b_{1}, b_{2} \in \mathbb{Z}$ be a lattice segment.
(i) Show that

$$
\operatorname{ehr}_{\mathcal{S}}(n)=L n+1
$$

where $L=\left|\operatorname{gcd}\left(a_{2}-a_{1}, b_{2}-b_{1}\right)\right|$ is the lattice length of \mathcal{S}.
(ii) Show that

$$
(-1)^{\operatorname{dim} \mathcal{S}^{\operatorname{ehr}}}{ }_{\mathcal{S}}(-n)=\operatorname{ehr}_{\mathcal{S}^{\circ}}(n)
$$

Exercise 2

Let $\Delta=\operatorname{conv}\left\{\binom{0}{0},\binom{3}{1},\binom{2}{2}\right\}$. Find the Ehrhart polynomials $\operatorname{ehr}_{\Delta}(n)$ and $\operatorname{ehr}_{\Delta^{\circ}}(n)$.

Exercise 3

Let $\mathbf{v}_{1}=\binom{a}{b}$ and $\mathbf{v}_{2}=\binom{c}{d}$ be two vectors in \mathbb{Z}^{2}, and let Q be the half open parallelogram

$$
Q:=\left\{\lambda \mathbf{v}_{1}+\mu \mathbf{v}_{2}: 0 \leq \lambda, \mu<1\right\} .
$$

Show (for example, by tiling the plane by translates of Q) that

$$
\operatorname{ehr}_{Q}(n)=A n^{2}
$$

where $A=\left|\begin{array}{ll}a & c \\ b & d\end{array}\right|$.

Exercise 4

Let $P \subset \mathbb{R}^{2}$ be a lattice polygon with area A, I interior integer points, and B integer points on the boundary. Show that:
(i) $A=I+\frac{1}{2} B-1$.
(ii) $\operatorname{ehr}_{P^{\circ}}(n)=A n^{2}-\frac{1}{2} B n+1$.
(iii) $\operatorname{ehr}_{P}(n)=A n^{2}+\frac{1}{2} B n+1$.

