Exercise 1

Cesar Ceballos

TU Graz

Institute of Geometry

Let Π be the poset consisting of *d* pairwise incomparable elements (an antichain).

- (i) Show that the lattice $\mathcal{J}(\Pi)$ of order ideals of Π is the Boolean lattice B_d .
- (ii) Define the zeta polynomial $Z_{B_d}(n) := \zeta_{B_d}^n(\hat{0}, \hat{1})$ where ζ_{B_d} is the zeta function of B_d . Show that

 $Z_{B_d}(n) = n^d.$

(iii) Verify that

$$\Omega_{\Pi}(n) = \zeta_{\mathcal{J}(\Pi)}^{n}(\emptyset, \Pi).$$

Exercise 2

Let $\Pi = [k]$.

- (i) Show that $\mathcal{J}(\Pi) \cong [k+1]$.
- (ii) Show that the zeta polynomial $Z_{[k+1]}(n) := \zeta_{[k+1]}^n(\hat{0},\hat{1})$ is

$$Z_{[k+1]}(n) = \binom{n+k-1}{k}.$$

(iii) Verify that

$$\Omega_{\Pi}(n) = \zeta_{\mathcal{J}(\Pi)}^{n}(\emptyset, \Pi).$$

Exercise 3

Let Π be a finite poset and $I(\Pi)$ the incident algebra of Π . Show that $\alpha \in I(\Pi)$ is invertible if and only if $\alpha(x, x) \neq 0$ for all $x \in \Pi$.