Exercise 1

Consider the poset Π of d pairwise incomparable elements, and its lattice of order ideals $\mathcal{J}(\Pi) \cong B_{d}$.
(i) Show that the Möbius function of the Boolean lattice B_{d} is given by:

$$
\mu_{B_{d}}(A, B)= \begin{cases}(-1)^{|B \backslash A|} & \text { if } A \subseteq B \subseteq[d] \\ 0 & \text { otherwise }\end{cases}
$$

(ii) Verify that

$$
\Omega_{\Pi}(-n)=\mu_{\mathcal{J}(\Pi)}^{n}(\emptyset, \Pi) .
$$

Exercise 2

Consider the poset $\Pi=[k]$ and its lattice of order ideals $\mathcal{J}(\Pi) \cong[k+1]$.
(i) Show that the Möbius function of $[k+1]$ is given by:

$$
\mu_{[k+1]}(A, B)= \begin{cases}(-1)^{|B \backslash A|} & \text { if } A \subseteq B \subseteq[k+1] \text { and }|B \backslash A| \in\{0,1\} \\ 0 & \text { otherwise }\end{cases}
$$

(ii) Verify that

$$
\Omega_{\Pi}(-n)=\mu_{\mathcal{J}(\Pi)}^{n}(\emptyset, \Pi) .
$$

Exercise 3

For two posets $\left(\Pi_{1}, \preceq_{1}\right)$ and $\left(\Pi_{2}, \preceq_{2}\right)$, we define their direct product as the poset with underlying set $\Pi_{1} \times \Pi_{2}$ and partial order

$$
\left(x_{1}, x_{2}\right) \preceq\left(y_{1}, y_{2}\right): \Longleftrightarrow x_{1} \preceq_{1} y_{1} \text { and } x_{2} \preceq_{2} y_{2} .
$$

(i) Show that every interval $\left[\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right]$ of $\Pi_{1} \times \Pi_{2}$ is of the form $\left[x_{1}, y_{1}\right] \times\left[x_{2}, y_{2}\right]$.
(ii) Show that $\mu_{\Pi_{1} \times \Pi_{2}}\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\mu_{\Pi_{1}}\left(x_{1}, y_{1}\right) \mu_{\Pi_{2}}\left(x_{2}, y_{2}\right)$.

Exercise 4

The Möbius function in number theory is the function $\mu: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}$ defined as:

$$
\mu(n)= \begin{cases}1 & \text { if } n=1 \\ 0 & \text { if } n \text { is not squarefree } \\ (-1)^{r} & \text { if } n \text { is the product of } r \text { distinct primes }\end{cases}
$$

Consider the poset D_{n} whose elements are the divisors of n ordered by divisibility.
(i) Show that $\mu(n)=\mu_{D_{n}}(1, n)$.

