Exercise 1

We say that $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{d} \in \mathbb{Z}^{d}$ form a lattice basis of \mathbb{Z}^{d} if every point in \mathbb{Z}^{d} can be uniquely expressed as an integral linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{d}$. Let \mathbf{A} be the matrix with columns $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{d}$. Show that $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{d}$ form a lattice basis if and only if $\operatorname{det}(\mathbf{A})= \pm 1$.

Exercise 2

Let Δ be the convex hull of the origin and the d unit vectors in \mathbb{R}^{d}. Show that

$$
\operatorname{ehr}_{\Delta}(n)=\binom{n+d}{d}
$$

More generally, show that $\operatorname{ehr}_{\Delta}(n)=\binom{n+d}{d}$ for every unimodular simplex Δ in \mathbb{R}^{d}.

Exercise 3

Show that a polyhedron $Q \subseteq \mathbb{R}^{d}$ is a polyhedral cone if and only if

$$
Q=\left\{\mathbf{x} \in \mathbb{R}^{d}: \mathbf{A} \mathbf{x} \leq \mathbf{0}\right\}
$$

for some matrix \mathbf{A}.

Exercise 4

Let $Q=\left\{\mathbf{x} \in \mathbb{R}^{d}: \mathbf{A x} \leq \mathbf{b}\right\}$ be a nonempty polyhedron.
(i) Show that

$$
\operatorname{rec}(Q)=\left\{\mathbf{x} \in \mathbb{R}^{d}: \mathbf{A x} \leq \mathbf{0}\right\}
$$

(ii) Infer that $\mathbf{p}+\operatorname{rec}(Q) \subseteq Q$ for all $\mathbf{p} \in Q$.
(iii) Show that Q is bounded if and only if $\operatorname{rec}(Q)=\{\mathbf{0}\}$.

Exercise 5

Let $Q=\left\{\mathbf{x} \in \mathbb{R}^{d}: \mathbf{A x} \leq \mathbf{b}\right\}$ be a nonempty polyhedron.
(i) Show that

$$
\operatorname{lineal}(Q)=\left\{\mathbf{x} \in \mathbb{R}^{d}: \mathbf{A x}=\mathbf{0}\right\}
$$

(ii) Infer that $\mathbf{p}+\operatorname{lineal}(Q) \subseteq Q$ for all $\mathbf{p} \in Q$.

