Exercise 1

We say that $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_d \in \mathbb{Z}^d$ form a lattice basis of \mathbb{Z}^d if every point in \mathbb{Z}^d can be uniquely expressed as an integral linear combination of $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_d$. Let **A** be the matrix with columns $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_d$. Show that $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_d$ form a lattice basis if and only if det(**A**) = ±1.

Exercise 2

Let Δ be the convex hull of the origin and the d unit vectors in \mathbb{R}^d . Show that

$$\operatorname{ehr}_{\Delta}(n) = \binom{n+d}{d}.$$

More generally, show that $ehr_{\Delta}(n) = \binom{n+d}{d}$ for every unimodular simplex Δ in \mathbb{R}^d .

Exercise 3

Show that a polyhedron $Q \subseteq \mathbb{R}^d$ is a polyhedral cone if and only if

$$Q = \{ \mathbf{x} \in \mathbb{R}^d : \mathbf{A}\mathbf{x} \le \mathbf{0} \}$$

for some matrix A.

Exercise 4

Let $Q = {\mathbf{x} \in \mathbb{R}^d : \mathbf{A}\mathbf{x} \leq \mathbf{b}}$ be a nonempty polyhedron.

(i) Show that

$$\operatorname{rec}(Q) = \{ \mathbf{x} \in \mathbb{R}^d : \mathbf{A}\mathbf{x} \le \mathbf{0} \}.$$

- (ii) Infer that $\mathbf{p} + \operatorname{rec}(Q) \subseteq Q$ for all $\mathbf{p} \in Q$.
- (iii) Show that Q is bounded if and only if $rec(Q) = \{0\}$.

Exercise 5

Let $Q = {\mathbf{x} \in \mathbb{R}^d : \mathbf{A}\mathbf{x} \leq \mathbf{b}}$ be a nonempty polyhedron.

(i) Show that

lineal
$$(Q) = \{ \mathbf{x} \in \mathbb{R}^d : \mathbf{A}\mathbf{x} = \mathbf{0} \}.$$

(ii) Infer that $\mathbf{p} + \text{lineal}(Q) \subseteq Q$ for all $\mathbf{p} \in Q$.