Exercise 1

Show that for integers $m \geq k \geq 0$,

$$
\sum_{n \geq k}\binom{n+m-k}{m} z^{n}=\frac{z^{k}}{(1-z)^{m+1}} .
$$

Exercise 2

Find a formula for the generating function $F(z)=\sum_{n \geq 0} f(n)$ of the following sequences:
(i) $f(n)=3 n+1$.
(ii) $f(n)=\binom{n}{1}+4\binom{n}{2}+\binom{n}{3}$.
(iii) The tribonacci sequence $0,0,1,1,2,4,7,13,24, \ldots$ determined by the recurrence

$$
f(n+3)=f(n+2)+f(n+1)+f(n),
$$

with initial values $f(0)=f(1)=0$ and $f(2)=1$.

Exercise 3

For each sequence in Exercise 2, find a formula for the generating function

$$
F^{\circ}(z):=\sum_{n \geq 1} f^{\circ}(n) z^{n},
$$

where $f^{\circ}(n):=f(-n)$. Note that the sum starts at $n=1$.

Exercise 4

Let $(f(n))_{\geq 0}$ be a sequence with initial values $f(0), f(1), \ldots, f(d-1)$, such that for every $n \geq 0$ it satisfies the linear recurrence

$$
c_{0} f(n+d)+c_{1} f(n+d-1)+\cdots+c_{d} f(n)=0
$$

for some $c_{0}, \ldots, c_{d} \in \mathbb{C}$ with $c_{0}, c_{d} \neq 0$.
(i) Show that

$$
F(z)=\sum_{n \geq 0} f(n)=\frac{p(z)}{c_{0}+c_{1} z+\cdots+c_{d} z^{d}}
$$

for some polynomial $p(z)$ of degree $<d$.
(ii) We can run the recurrence backwards and define $f^{\circ}(n)=f(-n)$ for $n \geq 1$. Show that

$$
F^{\circ}(z):=\sum_{n \geq 1} f^{\circ}(n) z^{n}=-\frac{z^{d} p\left(\frac{1}{z}\right)}{c_{0} z^{d}+c_{1} z^{d-1}+\cdots+c_{d}} .
$$

