Exercise 1

Let $\mathbb{Q}[\mathbf{x}]:=\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring in n variables. A polynomial $f \in \mathbb{Q}[\mathbf{x}]$ is called \mathfrak{S}_{n}-invariant if $f\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)=f\left(x_{1}, \ldots, x_{n}\right)$ for every permutation $\sigma \in \mathfrak{S}_{n}$. Let I be the ideal generated by \mathfrak{S}_{n}-invariant polynomials with no constant term. Show that the quotient

$$
\mathbb{Q}[\mathbf{x}] / I
$$

is a finite dimensional space of dimension n !.

Exercise 2

Let $\mathbb{Q}[\mathbf{x}, \mathbf{y}]:=\mathbb{Q}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ be the polynomial ring in two sets of n variables. The symmetric group \mathfrak{S}_{n} acts "diagonally" in $\mathbb{Q}[\mathbf{x}, \mathbf{y}]$ via

$$
(\sigma f)(\mathbf{x}, \mathbf{y})=f\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}, y_{\sigma(1)}, \ldots, y_{\sigma(n)}\right)
$$

Let I be the ideal generated by \mathfrak{S}_{n}-invariant polynomials with no constant term. Show that the quotient

$$
\mathbb{Q}[\mathbf{x}, \mathbf{y}] / I
$$

is a finite dimensional space of dimension $(n+1)^{(n-1)}$, the number of parking functions.

Exercise 3

Let $\mathbb{Q}\left[\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(r)}\right]$ be the polynomial ring in r sets of n variables, where $\mathbf{x}^{i}=\left[x_{1}^{(i)}, \ldots, x_{n}^{(i)}\right]$. The symmetric group \mathfrak{S}_{n} acts "diagonally" in $\mathbb{Q}\left[\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(r)}\right]$ similarly as above. Let I be the ideal generated by \mathfrak{S}_{n}-invariant polynomials with no constant term. Show that for a fixed n and arbitrary number of sets of variables r, the dimension

$$
D_{n}(r):=\operatorname{dim}(\mathbb{Q}[\mathbf{x}, \mathbf{y}] / I)
$$

is a polynomial in r.
Here are the first values of these polynomials for $n=1,2,3,4$:

$$
\begin{aligned}
& D_{1}(r)=1 \\
& D_{2}(r)=\binom{r+1}{1} \\
& D_{3}(r)=\binom{r+1}{1}+4\binom{r+1}{2}+\binom{r+1}{3} \\
& D_{4}(r)=\binom{r+1}{1}+22\binom{r+1}{2}+56\binom{r+1}{3}+40\binom{r+1}{4}+11\binom{r+1}{5}+\binom{r+1}{6}
\end{aligned}
$$

You are invited to double check that $D_{n}(1)=n$! and $D_{n}(2)=(n+1)^{n-1}$ for these four polynomials.

Exercise 4

Open Problem by François Bergeron: Show that

$$
D_{n}(-2)=(-1)^{n-1} C_{n-1},
$$

where $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ is the n-th Catalan number.

