Exercise 1

Use Haiman's operator theorem to:
(i) Compute $D H_{3}$ explicitly.
(ii) Show that $\operatorname{dim}\left(\mathrm{DH}_{3}\right)=4^{2}=16$ (number of parking functions).
(iii) Show that

$$
\begin{gathered}
\operatorname{Hilb}_{D H_{3}}(q, t)=1+2 q+2 t+2 q^{2}+3 q t+2 t^{2}+q^{3}+q^{2} t+q t^{2}+t^{3} . \\
t^{3} \left\lvert\, \begin{array}{ccccc}
1 & & \\
t^{2} & 2 & 1 & & \\
t & 2 & 3 & 1 & \\
1 & 1 & 2 & 2 & 1 \\
\hline & 1 & q & q^{2} & q^{3}
\end{array}\right.
\end{gathered}
$$

Note that this polynomial is symmetric in q and t.

Exercise 2

In the previous exercise ($n=3$), verify that:
(i) $\operatorname{Hilb}_{D H_{n}}(q, 0)=[n]_{q}$!
(ii) $q^{\binom{n}{2}} \operatorname{Hilb}_{D H_{n}}\left(q, q^{-1}\right)=[n+1]_{q}^{n-1}$
(iii) $\operatorname{Hilb}_{D H_{n}}(q, 1)=\sum_{P \in \operatorname{Park}(n)} q^{\operatorname{area}(P)}$

Exercise 3

Let Alt ${ }_{n}$ be the subspace of alternants of $D H_{n}$ and define the q, t-Catalan polynomial as $c_{n}(q, t):=\operatorname{Hilb}_{\mathrm{Alt}_{n}}(q, t)$.
(i) Compute Alt_{3} explicitly.
(ii) Show that

$$
c_{3}(q, t)=q^{3}+q^{2} t+q t+q t^{2}+t^{3} .
$$

Note that this polynomial is symmetric in q and t.

Exercise 4

In the previous exercise ($n=3$), verify that:
(i) $q^{\binom{n}{2}} \operatorname{Hilb}_{\mathrm{Alt}_{n}}\left(q, q^{-1}\right)=\frac{1}{[n+1]_{q}}\left[\begin{array}{c}2 n \\ n\end{array}\right]_{q}$
(ii) $\operatorname{Hilb}_{\mathrm{Alt}_{n}}(q, 0)=\sum_{\pi \in \operatorname{Dyck}(n)} q^{\operatorname{area}(\pi)}$.

