Exercise 1

Let $\pi \in \operatorname{Dyck}(n)$ be a Dyck path of size n, and $a(\pi)=\left(a_{1}, \ldots, a_{n}\right)$ be its area vector. Show that the two following definitions of the dinv statistic coincide:

$$
\begin{gathered}
\operatorname{dinv}(\pi)=\mid\left\{(i, j): i<j \text { and either } a_{i}=a_{j} \text { or } a_{i}=a_{j}+1\right\} \mid \\
\operatorname{dinv}(\pi)=\mid\{B \text { box above } \pi: \operatorname{arm}(B)=\operatorname{leg}(B) \text { or } \operatorname{arm}(B)=\operatorname{leg}(B)+1\} \mid
\end{gathered}
$$

Exercise 2

Let $\zeta:, \operatorname{Dyck}(n) \rightarrow \operatorname{Dyck}(n)$ be the zeta map defined in Lecture 4. Show that:
(i) ζ is a bijection
(ii) $\operatorname{area}(\pi)=\operatorname{bounce}(\zeta(\pi))$
(iii) $\operatorname{dinv}(\pi)=\operatorname{area}(\zeta(\pi))$

Exercise 3

Verify the following equality (calculate explicitly) for $n \leq 4$:

$$
\frac{1}{[n+1]_{q}}\left[\begin{array}{c}
2 n \\
n
\end{array}\right]_{q}=\sum_{\pi \in \operatorname{Dyck}(n)} q^{\operatorname{area}(\pi)+\operatorname{codinv}(\pi)}
$$

where $\operatorname{codinv}(\pi):=\binom{n}{2}-\operatorname{dinv}(\pi)$.

