Exercise 1

Show that the number of (a, b)-cores is finite if and only if a and b are relatively prime.

Exercise 2

Let a, b be relatively prime. Show that:
(i) The number of (a, b)-Dyck paths is equal to $\frac{1}{a+b}\binom{a+b}{a}$.
(ii) The expression $\frac{1}{[a+b]_{q}}\left[\begin{array}{c}a+b \\ a\end{array}\right]_{q}$ is a polynomial in q. Hint: use $[a]_{q}\left[\begin{array}{c}a+b \\ a\end{array}\right]_{q}=[a+b]_{q}\left[\begin{array}{c}a+b-1 \\ a-1\end{array}\right]_{q}$ and that $[a]_{q}$ and $[a+b]_{q}$ have no roots in common.

Exercise 3

Show that conjugation on (a, b)-cores corresponds to conjugation on (a, b)-Dyck paths under Anderson's bijection.

Exercise 4

Verify the following equalities of $a=3$ and $b=5$ (compute explicitly). The sums run over all (a, b)-cores λ.
(i) $\frac{1}{[a+b]_{q}}\left[\begin{array}{c}a+b \\ a\end{array}\right]_{q}=\sum_{\lambda} q^{\ell(\lambda)+s l(\lambda)}$
(ii) $\sum_{\lambda} q^{e(\lambda)} t^{s l^{\prime}(\lambda)}=\sum_{\lambda} t^{e(\lambda)} q^{s l^{\prime}(\lambda)}$

Is there a simple proof of (i)?
Finding a combinatorial proof of the q, t-symmetry (ii) is an open problem.

