Exercise 1

Show that the number of (a, b)-cores is finite if and only if a and b are relatively prime.

Exercise 2

Let a, b be relatively prime. Show that:

- (i) The number of (a, b)-Dyck paths is equal to $\frac{1}{a+b} {a+b \choose a}$.
- (ii) The expression $\frac{1}{[a+b]_q} \begin{bmatrix} a+b\\a \end{bmatrix}_q$ is a polynomial in q. Hint: use $[a]_q \begin{bmatrix} a+b\\a \end{bmatrix}_q = [a+b]_q \begin{bmatrix} a+b-1\\a-1 \end{bmatrix}_q$ and that $[a]_q$ and $[a+b]_q$ have no roots in common.

Exercise 3

Show that conjugation on (a, b)-cores corresponds to conjugation on (a, b)-Dyck paths under Anderson's bijection.

Exercise 4

Verify the following equalities of a = 3 and b = 5 (compute explicitly). The sums run over all (a, b)-cores λ .

(i)
$$\frac{1}{[a+b]_q} \begin{bmatrix} a+b\\a \end{bmatrix}_q = \sum_{\lambda} q^{\ell(\lambda)+sl(\lambda)}$$

(ii)
$$\sum_{\lambda} q^{\ell(\lambda)} t^{sl'(\lambda)} = \sum_{\lambda} t^{\ell(\lambda)} q^{sl'(\lambda)}$$

Is there a simple proof of (i)? Finding a combinatorial proof of the q, t-symmetry (ii) is an open problem.