Exercise 1

Let B_{n} be the Boolean poset of subsets of $[n]$ ordered by inclusion. Show that for $S \subseteq T$ in B_{n} we have

$$
\mu(S, T)=(-1)^{|S \backslash T|} .
$$

Exercise 2

Let D_{n} be the poset of divisors of n ordered by divisibility. Show that if $s, t \in D_{n}$ such that s divides t then

$$
\mu(s, t)= \begin{cases}(-1)^{t} & \text { if } s / t \text { is a product of } k \text { distinct primes } \\ 0 & \text { otherwise. }\end{cases}
$$

Exercise 3

Let P be a finite poset with a minimal element $\hat{0}$ and a maximal element $\hat{1}$. Let c_{k} be the number of chains $\hat{0}=t_{0}<t_{1}<\cdots<t_{k}=\hat{1}$ of length k between $\hat{0}$ and $\hat{1}$. (In particular, $c_{0}=0$ if $\hat{0} \neq \hat{1}$ and $c_{1}=1$.) Show that

$$
\mu_{P}(\hat{0}, \hat{1})=c_{0}-c_{1}+c_{2}-c_{3}+\ldots
$$

Hint: prove and use the following expression for μ :

$$
\mu=1-(\zeta-1)+(\zeta-1)^{2}-(\zeta-1)^{3}+\ldots
$$

where $1=\delta$ is the identify element of the incident algebra.

Exercise 4

For $n \geq 2$, define $Z(P, n)$ to be the number of multi-chains $t_{1} \leq t_{2} \leq \cdots \leq t_{n-1}$ in P. Show that:
(i) $Z(P, n)$ is a polynomial in n. (This is called the zeta polynomial of P.)
(ii) If P has a $\hat{0}$ and a $\hat{1}$, then $Z(P, n)=\zeta^{n}(\hat{0}, \hat{1})$. In particular,

$$
Z(P,-1)=\mu(\hat{0}, \hat{1}), Z(P, 0)=0 \text { if } \hat{0} \neq \hat{1}, \text { and } Z(P, 1)=1
$$

