Exercise 1

A poset P is said to be graded of rank n if every maximal chain of P has the same length n. In this case, the rank function $\rho: P \rightarrow\{0,1, \ldots, n\}$ is the unique function satisfying $\rho(s)=0$ if s is a minimal element of P and $\rho(t)=\rho(s)+1$ if t covers s in $P(s \lessdot t)$.
Let P be a finite graded poset of rank n with $\hat{0}$. The characteristic polynomial $\chi_{P}(t)$ of P is defined as

$$
\chi_{P}(x)=\sum_{t \in P} \mu(\hat{0}, t) x^{n-\rho(t)} .
$$

(i) Let B_{n} be the Boolean poset of subsets of $[n]$ ordered by inclusion. Show that $\chi_{B_{n}}(x)=(x-1)^{n}$.

Exercise 2

Let G be a simple graph (without loops or double edges) with vertex set V and edge set $E \subseteq\binom{V}{2}$. A proper n coloring of G is a function $f: V \rightarrow[n]$ such that $f(a) \neq f(b)$ if $\{a, b\} \in E$. Let $\chi_{G}(n)$ be the number of proper n-coloring of G. The function is $\chi_{G}: \mathbb{N} \rightarrow \mathbb{N}$ is called the chromatic polynomial of G.
(i) Compute the chromatic polynomial χ_{G} for the following graphs:

$$
G=\Omega \quad G=
$$

Exercise 3

Let G be a simple graph with vertex set V. A set $A \subseteq V$ is connected if the induced subgraph on A is connected. Let L_{G} be the poset of all partitions π of V ordered by refinement, such that every block of V is connected.
(i) Show that the chromatic polynomial of G can be computed as

$$
\chi_{G}(n)=\sum_{\pi \in L_{G}} \mu(\hat{0}, \pi) n^{\# \pi}
$$

where $\# \pi$ is the number of blocks of π and μ is the Möbius functions of L_{G}.
(ii) Show that the chromatic polynomial $\chi_{G}(n)$ and the characteristic polynomial $\chi_{L_{G}}(n)$ are related by

$$
\chi_{G}(n)=n^{c} \chi_{L_{G}}(n)
$$

where c is the number of connected components of G.

Exercise 4

Let P_{n} be the lattice of partitions of $[n]$ ordered by refinement.

(i) Show that the characteristic polynomial of P_{n} is $\chi_{P_{n}}(x)=(x-1)(x-2) \ldots(x-n+1)$.
(ii) Show that $\mu_{P_{n}}(\hat{0}, \hat{1})=(-1)^{n-1}(n-1)$!

