1 The lattice of non-crossing partitions

The collection of noncrossing partitions of $[n+1]$ ordered by refinement forms a poset called the lattice of noncrossing partitions NC_{n+1} (go up in the poset by gluing blocks together). The following are examples of NC_{3} and NC_{4}.

This project regards generalizations of the following known enumerative properties of these lattices:

1. The number of maximal chains of NC_{n+1} is $(n+1)^{n-1}$, the number of parking functions [11, Corollary 3.3], see also [13, Theorem 3.1].
2. The Möbius function of the top element is up to sign the nth Catalan number

$$
(-1)^{n} \mu(\hat{1})=\frac{1}{n+1}\binom{2 n}{n}
$$

This result is due to Kreweras [12], see also [5].
This has been generalized for m-divisible non-crossing partitions and for other Coxeter groups; see [1] and the references therein, in particular [3,2,14]. I propose to generalize this further in the context of signature Catalan combinatorics [8], using the geometry/combinatorics of ν-associahedra [9, 10].

- The noncrossing partition lattice was generalized to any finite real reflection group by Brady and Watt [6] and Bessis [4]. In [3, Corollary 4.3], the Möbius function of any interval [u,v] is calculated in terms of falling chains in $[u, v]$. If u is the minimal element and v is the maximum, one gets the Möbius number of the noncrossing partition lattice. Using results of [7], they relate it to the number of positive clusters of the generalized associahedron of the corresponding type.
- The lattice of m-divisible non-crossing partitions was first studied by Edelman in [11]. A generalization denoted $N C^{k}(W)$ for finite Coxeter groups is due to Armstrong [2]. The number of maximal chains is $n!(k h)^{n} /|W|$ where h is the Coxeter number and n is the rank of W, see [2, Corollary 3.6.10 and Theorem 3.6.9]. For an analog result related to the Möbius function see [2, Theorem 3.7.7]

References

[1] D. Armstrong and C. Krattenthaler. Euler characteristic of the truncated order complex of generalized noncrossing partitions. Electron. J. Combin., 16(1):Research Paper 143, 10, 2009.
[2] Drew Armstrong. Generalized noncrossing partitions and combinatorics of Coxeter groups. Mem. Amer. Math. Soc., 202(949): x+159, 2009.
[3] Christos A. Athanasiadis, Thomas Brady, and Colum Watt. Shellability of noncrossing partition lattices. Proc. Amer. Math. Soc., 135(4):939-949, 2007.
[4] David Bessis. The dual braid monoid. Ann. Sci. École Norm. Sup. (4), 36(5):647-683, 2003.
[5] Andreas Blass and Bruce E. Sagan. Möbius functions of lattices. Adv. Math., 127(1):94-123, 1997.
[6] Thomas Brady and Colum Watt. $K(\pi, 1)$'s for Artin groups of finite type. In Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part I (Haifa, 2000), volume 94, pages 225-250, 2002.
[7] Thomas Brady and Colum Watt. Non-crossing partition lattices in finite real reflection groups. Trans. Amer. Math. Soc., 360(4):1983-2005, 2008.
[8] Cesar Ceballos and Rafael S. González D'León. Signature Catalan combinatorics. J. Comb., 10(4):725773, 2019.
[9] Cesar Ceballos, Arnau Padrol, and Camilo Sarmiento. Geometry of ν-Tamari lattices in types A and B. Trans. Amer. Math. Soc., 371(4):2575-2622, 2019.
[10] Cesar Ceballos, Arnau Padrol, and Camilo Sarmiento. The ν-Tamari lattice via ν-trees, ν-bracket vectors, and subword complexes. Electron. J. Combin., 27(1):Paper No. 1.14, 31, 2020.
[11] Paul H. Edelman. Chain enumeration and noncrossing partitions. Discrete Math., 31(2):171-180, 1980.
[12] G. Kreweras. Sur les partitions non croisées d'un cycle. Discrete Math., 1(4):333-350, 1972.
[13] Richard P. Stanley. Parking functions and noncrossing partitions. volume 4, pages Research Paper 20, approx. 14. 1997. The Wilf Festschrift (Philadelphia, PA, 1996).
[14] Masaya Tomie. Möbius numbers of some modified generalized noncrossing partitions. Toyama Math. J., 37:145-153, 2015.

