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1 The lattice of non-crossing partitions

The collection of noncrossing partitions of [n+ 1] ordered by refinement forms a poset called the lattice of
noncrossing partitions NCn+1 (go up in the poset by gluing blocks together). The following are examples
of NC3 and NC4.
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This project regards generalizations of the following known enumerative properties of these lattices:

1. The number of maximal chains of NCn+1 is (n+ 1)n−1, the number of parking functions [11, Corolla-
ry 3.3], see also [13, Theorem 3.1].

2. The Möbius function of the top element is up to sign the nth Catalan number

(−1)nµ(1̂) = 1
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.

This result is due to Kreweras [12], see also [5].

This has been generalized for m-divisible non-crossing partitions and for other Coxeter groups; see [1] and
the references therein, in particular [3, 2, 14]. I propose to generalize this further in the context of signature
Catalan combinatorics [8], using the geometry/combinatorics of ν-associahedra [9, 10].

• The noncrossing partition lattice was generalized to any finite real reflection group by Brady and Watt [6]
and Bessis [4]. In [3, Corollary 4.3], the Möbius function of any interval [u, v] is calculated in terms of
falling chains in [u, v]. If u is the minimal element and v is the maximum, one gets the Möbius number of
the noncrossing partition lattice. Using results of [7], they relate it to the number of positive clusters of
the generalized associahedron of the corresponding type.

• The lattice of m-divisible non-crossing partitions was first studied by Edelman in [11]. A generalization
denoted NCk(W ) for finite Coxeter groups is due to Armstrong [2]. The number of maximal chains
is n!(kh)n/|W | where h is the Coxeter number and n is the rank of W , see [2, Corollary 3.6.10 and
Theorem 3.6.9]. For an analog result related to the Möbius function see [2, Theorem 3.7.7]
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[14] Masaya Tomie. Möbius numbers of some modified generalized noncrossing partitions. Toyama Math. J.,
37:145–153, 2015.

2


	The lattice of non-crossing partitions

