
Cesar Ceballos
Institute of Geometry
TU Graz

Topics in Combinatorics, Algebra and Geometry
Potential Final Project B

Winter Semester
2023-2024

1 Volume of permutahedra and parking functions

The purpose of the project is to understand a known connection between the volume of a permutahedron and
the number of parking functions based on Postnikov’s work [1].

For x1, . . . , xn ∈ R define the permutahedron as the convex hull of all permutations of (x1, . . . , xn):

Pn(x1, . . . , xn); = conv{(xi1 , . . . , xin) : {i1, . . . , in} = [n]} ⊆ Rn

Since the sum of the coordinates is constant, then Pn(x1, . . . , xn) is an (n− 1)-dimensional polytope.

As an example, the permutahedron P3(2, 1, 0) is the two dimensional polytope (an hexagon):

P3(2, 1, 0) = conv{(2, 1, 0), (2, 0, 1), (1, 2, 0), (1, 0, 2), (0, 2, 1), (0, 1, 2)}.
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In [1, Corollary 11.5], Postnikov proved that the volume of the permutahedron Pn(n− 1, n− 2, . . . , 0) is equal
to nn−2, the number of parking functions. In our example, n = 3 and the volume of P3(2, 1, 0), area of the
blue hexagon, is equal to 31 = 3. See also Theorem 9.3, Example 9.7 and Example 11.4 in [1].

Equivalently, Postnikov shows that the volume of Pn(n− 1, n− 2, . . . , 0) counts the number of integer points of

Pn(n− 1, n− 2, . . . , 0)−∆[n] = Pn(n− 2, n− 2, . . . , 0).

For our running example with n = 3, this polytope is shown in red below. The number of lattice points is equal
to 3.
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