1 Volume of permutahedra and parking functions

The purpose of the project is to understand a known connection between the volume of a permutahedron and the number of parking functions based on Postnikov's work [1].
For $x_{1}, \ldots, x_{n} \in \mathbb{R}$ define the permutahedron as the convex hull of all permutations of $\left(x_{1}, \ldots, x_{n}\right)$:

$$
P_{n}\left(x_{1}, \ldots, x_{n}\right) ;=\operatorname{conv}\left\{\left(x_{i_{1}}, \ldots, x_{i_{n}}\right):\left\{i_{1}, \ldots, i_{n}\right\}=[n]\right\} \subseteq \mathbb{R}^{n}
$$

Since the sum of the coordinates is constant, then $P_{n}\left(x_{1}, \ldots, x_{n}\right)$ is an $(n-1)$-dimensional polytope.
As an example, the permutahedron $P_{3}(2,1,0)$ is the two dimensional polytope (an hexagon):

$$
P_{3}(2,1,0)=\operatorname{conv}\{(2,1,0),(2,0,1),(1,2,0),(1,0,2),(0,2,1),(0,1,2)\} .
$$

In [1, Corollary 11.5], Postnikov proved that the volume of the permutahedron $P_{n}(n-1, n-2, \ldots, 0)$ is equal to n^{n-2}, the number of parking functions. In our example, $n=3$ and the volume of $P_{3}(2,1,0)$, area of the blue hexagon, is equal to $3^{1}=3$. See also Theorem 9.3, Example 9.7 and Example 11.4 in [1].
Equivalently, Postnikov shows that the volume of $P_{n}(n-1, n-2, \ldots, 0)$ counts the number of integer points of

$$
P_{n}(n-1, n-2, \ldots, 0)-\Delta_{[n]}=P_{n}(n-2, n-2, \ldots, 0) .
$$

For our running example with $n=3$, this polytope is shown in red below. The number of lattice points is equal to 3.

References

[1] Alexander Postnikov. Permutohedra, associahedra, and beyond. Int. Math. Res. Not. IMRN, (6):1026-1106, 2009.

