
MULTIDIMENSIONAL CONTINUED FRACTIONS

JUNE 22 – 26, TU GRAZ

Schedule of the workshop

Saturday Sunday Tuesday Wednesday
22 June 23 June 25 June 26 June

9:00–9:45 T. Garrity-I R. Nair-II M. Skopenkov-II C. Elsholtz

9:45–10:30 R. Nair-I V. Goryunov T. Garrity-II T. Garrity-III

10:30–11:00 Coffee break Coffee break Coffee break Coffee break

11:00–11:45 A. Ustinov-I A. Ustinov-II O. German J. Thuswaldner

11:45–12:30 M. Skopenkov-I T. Pejković R. Nair-III O. Karpenkov

12:30–14:30 Lunch break Lunch break Lunch break Lunch break

14:30–15:15 V. Petričević A.A. Illarionov M. Avdeeva

15:15–15:50 M. Monina

This conference is supported by the Austrian Science Fund (FWF), grant M 1273-N18.
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Some extra announcements

Saturday, 22 June, 8:45. Registration of the participants.

Monday, 24 June, 8:45. For those of adventurous mind who are in a good physical
shape, the climb through this narrow gorge is a memorable experience. A train takes us
to Mixnitz, where we walk for one hour and a half and then climb a total 164 ladders. In
the afternoon we end up at the Teichalm plateau at 1100m above sea level to have dinner
and return to Graz by train. Total time of the hike is approximately four hours. Any
special boots are not required, although it could be easier to climb the wooden ladders
with firm shoes.

A word of caution: You must not be afraid of heights. The organizers strongly urge
you not to attempt the climb if you feel unsure.

We are meeting at Graz Hauptbahnhof train station in front of the train ticket office.
Our train (S1) will leave at 9:05, direction Bruck/Mur.

Tuesday, 25 June, 17:00. The conference dinner would be at 18:00 in one of the nice
restaurants on a hill around Graz (“Stoffbauer”). To reach the restaurant we should make
a small walk, so we meet at 17:00 at the University.
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Abstracts

Mariya Avdeeva (jointly with Victor Bykovskii)
Institute for Applied Mathematics, Khabarovsk, Russia

[avdeeva@iam.khv.ru]

On Statistical Properties of Quotients of Irreducible Fractions
with Fixed Denominator

Let C : N → R be a sequence of real number (cost) such that C 6= 0 and |C(n)| ≤
log2(n+ 1) for each n ∈ N.

For rational r ∈ (0, 1) consider the continued fraction expansion

r = [0; q1, q2, . . . , qs] (qi = qi(r) are positive integers)

of length s = s(r). We define

sC(r) =

s(r)∑
i=1

C(qi(r)) and M(C) =
∞∑
n=1

C(k) log

(
1 +

1

n(n+ 2)

)
.

Let FN be a set of all irreducible r = m/n ∈ [0, 1] with n ≤ N (N ∈ N) and Φ(n) be a
number of elements of the set FN .

It is know that exists (see [1])

lim
N→∞

1

Φ(n)

∑
r∈FN

∣∣∣∣sC(r)− 12
π2M(C) logN
√

logN

∣∣∣∣2 = D(C) > 0

and uniformly for −∞ ≤ α < β ≤ ∞

1

Φ(n)
·#

{
r ∈ FN

∣∣∣ α ≤ sC(r)− 12
π2M(C) logN√

D(C) logN
≤ β

}
=

=
1√
2π

β∫
α

e−
x2

2 dx+O

(
1√

logN

)
.

We use these results and ideas from [2] as base to prove the following estimation.
Theorem. Put Z′d =

{
a ∈ Z

∣∣ 1 ≤ a ≤ d, gcd(a, d) = 1
}

and ϕ(d) = #Z′d. Then ∀ε > 0
uniformly for γ ≥ 1

1

ϕ(d)
#

{
a ∈ Z′d

∣∣∣ ∣∣sC(a
d
)− 12

π2M(C) log d
∣∣√

D(C) log d
≥ γ

}
�
C,ε

1

γ
e−

1
4
γ2 + log−

1
2

+ε d.

This theorem strengthen the result obtained in [3].
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Christian Elsholtz
TU Graz, Austria

[elsholtz@math.tugraz.at]

Sums of fractions

In this talk we give a survey on results and methods on solutions of the equation

m

n
=

1

x1

+ · · ·+ 1

xk
in positive integers.

The questions we study include the following:

(1) For fixed m,n and k, what can we say about the number fk(m,n) of solutions of

m

n
=

1

x1

+ · · ·+ 1

xk
?

Even the case m = n = 1 is for large k widely open.
(2) Fix m and k. What can we say about those n for which there is no solution of

m

n
=

1

x1

+ · · ·+ 1

xk
?

For the special case m = 4, k = 3 the famous Erdős-Straus conjecture states that
for n > 1 there is always a solution, but this conjecture is open.

Thomas Garrity
Williams College, USA

[Thomas.A.Garrity@williams.edu]

I. On the Hermite Problem and Multidimensional Continued
Fractions

We will discuss the advantages of motivating the study of multidimensional continued
fractions via the rhetoric of the Hermite problem, namely by the problem of finding ways
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of representing real number by a sequence of integers so that periodicity of the sequence
corresponds to the initial real being a cubic irrational. This first part will be emphasizing
how to explain and motivate multidimensional continued fractions to non-experts.

We will then look at TRIP maps, a family of multidimensional continued fraction
algorithms.

II. On TRIP Maps and the Hermite Problem

In the first part we will provide more details about TRIP maps, and in particular how
a certain family of TRIP maps links periodicity with units in any cubic number field.

We will then shift gears and talk about how to link some ideas motivated from ther-
modynamics to multidimensional continued fractions.

III. Some Functional Analysis behind Multidimensional
Continued Fractions: Transfer Operators

Most multidimensional continued fractions can be naturally interpreted as dynamical
systems. These dynamical systems often are iterations of triangles. This leads to natural
links between ergodic theory and multidimensional continued fractions. The study of
the statistics of the possible sequences of integers arising from a given multidimensional
continued fraction leads to the natural question of generalizing Gauss-Kuzmin-Wirsing
results from traditional continued fractions. This in turns leads naturally to the study of
the spectrum of certain operators (called transfer operators) mapping spaces of functions
on the initial triangle to spaces of function on the triangle. Thus we will be discussing
how to generalize the work of Mayer and others on transfer operators of the Gauss map
to multidimensional continued fractions.

Oleg German
Moscow State University, Russia

[german.oleg@gmail.com]

Klein polyhedra and Oppenheim conjecture for linear forms

We present a survey of results on Klein polyhedra which connect properties of a lattice to
be algebraic and to have positive norm minimum with some properties of Klein polyhedra’s
boundaries. These results allow reformulating the famous Oppenheim conjecture for linear
forms in terms of Klein polyhedra.
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Victor Goryunov
University of Liverpool, UK

[Victor.Goryunov@liverpool.ac.uk]

Rational Tangles and Rational Knots

The talk is devoted to the classical objects of knot theory, and to their classifications
obtained by Schubert and Conway.

Take two parallel threads in R3, and make a sequence of twists on pairs of their ends.
The result of the sequence is called a rational tangle. The term reflects Conway’s obser-
vation that there is a natural way to relate a rational number or∞ to such an object. He
has shown that this relation enumerates the isotopy classes of rational tangles, and each
such tangle is isotopy-equivalent to the rational tangle read from the continued fraction
expression of the related number.

We close a rational tangle by gluing up pairs of neighbouring ends. The result is called
a rational knot (to be precise, it is actually either a 1- or 2-component link). A theorem
by Schubert gives exact conditions on the rational numbers associated to tangles for the
rational links to be isotopic.

In the talk, I will explain some details of a combinatorial approach to the proofs of
these results due to Kauffman and Lambropoulou.

Andrei A. Illarionov
Institute for Applied Mathematics, Khabarovsk, Russia

[illar a@list.ru]

On statistical properties of Klein polyhedra and local minima

Two multidimensional generalizations of the classical continued fraction algorithm were
suggested at the end of the nineteenth century. One is due to Klein, and the other was
developed by Voronoi and independently by Minkowski.

Klein’s construction deals with the Klein polyhedra Kθ(Γ), where θ = (θ1, . . . , θs),
θi = ±1, and

Γ = {n1a
(1) + . . .+ nsa

(s) : ni ∈ Z, i = 1, s}

is a s-dimensional lattice with basis a(1), . . . a(s) ∈ Rs. Recall that Kθ(Γ) is defined as the
convex hull of nonzero points of Γ lying in the s-hedral angle

{x ∈ Rs : θixi ≥ 0, i = 1, s}.

The Voronoi-Minkowski construction deals with the set M(Γ) of all nonzero points
γ ∈ Γ such that there exists no nonzero point η ∈ Γ satisfying

|ηi| ≤ |γi|, i = 1, s,
s∑
i=1

|ηi| <
s∑
i=1

|γi|.
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Voronoi refers to elements of M(Γ) as relative minima. We use the term “local minimum”,
well established in English literature

We present some results on statistical properties of local minima and Klein polyhedra
of integer lattices with given determinant.

Oleg Karpenkov
TU Graz/ University of Liverpool

[karpenkov@tugraz.at]

Gauss-Kuzmin statistics for faces of Klein polyhedra

In this talk we consider multidimensional geometric continued fractions in the sense of
Klein, which is an alternative approach to Jacobi-Perron continued fraction algorithms.
Klein continued fractions are certain surfaces equipped with polyhedral structure. In the
algebraic case the polyhedral structure has a periodic nature. We show several examples
of multidimensional continued fractions and explain how to use Möbius geometry to gen-
eralize Gauss-Kuzmin ergodic statistics from the case of ordinary continued fractions to
the multidimensional case.

Mariya Monina (jointly with V.A. Bykovskii)
Institute for Applied Mathematics, Khabarovsk, Russia

[monina dvggu@mail.ru]

About the Arithmetic Nature of Some Identities of the Elliptic
Functions Theory

In the series of papers published in Journal de mathématiques pures et appliquées in
1858-1865 under the common title “Sur quelques formules générales qui peuventétre utiles
dans la théorie des nombres”, the French mathematician Liouville gave, without proof,
many arithmetic identities (they are listed in [4]). Using these identities, he calculated the
number of of representations of a positive integer by quadratic forms of special form and
published these calculations, also without proof, in numerous notes. Liouville’s methods
were reconstructed by Baskakov, Nazimov, Uspenskii, and other authors (see [4], [5], [6]
and [7]); new applications have also been developed.

A new arithmetic method for proving certain classical identities from the theory of
theta-functions is suggested. This method is applied, in particular, to obtain identities
for triple, quintuple and octuple product.

Let L be a nonzero linear form in s independent variables x1, . . . , xs (s = 2, 3, . . . )
with integer coefficients, and let

J, U−, U+, R : Rs → Rs

be four linear transformations determined by s× s matrices with integer coefficients and
determinants ±1.
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Suppose that Ω is finite subset in

Zs = {m = (m1, . . . ,ms) | mi ∈ Z},
which is partitioned into three disjoint subset Ω0, Ω− and Ω+ by the constraints

L(m) = 0, L(m) < 0 and L(m) > 0.

Theorem. Let Φ : Zs → A be an arbitrary function with values in additive abelian
group A such that

Φ(R(m)) = −Φ(m) ∀m ∈ Zs.
Then ∑

m∈Ω

Φ(m) =
∑
m∈Ω0

Φ(m).

Specializing Φ, Ω, L, J , U−, U+ for the form Q(x1, x2, x3, x4) = x2
2 + x2

3 + 2x1x2

we obtain identity

−
∑

b21+b22+8ac=d

χ−4(b1)χ−4(b2)h(2a+ b1, b2 + 2c) =

=
∑

n2
1+n2

2=d

χ−4(n1)χ−4(n2)(n2h(n1, n1)− 2
∑′′

−n1≤t≤n1
t is odd

h(t, n2)),

where h(b1, b2) = ub1vb2 − u−b1v−b2 + vb1ub2 − v−b1u−b2 and χ−4 : Z → {−1, 0, 1} is
quadratic character modulo 4.

Performing fairly simple calculations, we obtain the logarithmic derivative of classical
identity

u2 + 1

u2 − 1
+
v2 + 1

v2 − 1
+ 2

∞∑
n1,n2=1

(u−2n1v−2n2 − u2n1v2n2)q8n1n2 =

=
G(uv; q)G′(1; q)

G(u; q)G(v; q)
,

which goes back to Jacobi, with

G(w; q) =
∞∑

b=−∞

χ−4(b)wbqb
2

.

A detailed proof can be found in [3].

This work was supported by the program “Leading Scientific Schools” (project no.
1922.2012.1) and by the Russian Foundation for Basic Research (project no. 11-01-00628).
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Radhakrishan Nair
University of Liverpool, UK

[nair@liverpool.ac.uk]

Ergodic Methods for Continued Fractions

The study of the statistical properties of continued fractions was initiated by C.F. Gauss.
Building on subsequent of R.O. Kuzmin, A. Khinchin and W. Doeblin, C. Ryll-Nardzewski
showed that this theory could be based on Birkhoff’s pointwise ergodic theorem. This has
evolved into a substantial field called the metric theory of algorithms, covered by 11K in
Mathematics Reviews. In these talks I describe this subject and its modern development.
Topics covered should include, The Euclidean Algorithm, The Gauss Map, The invariant
measure, ergodicity and mixing, Birkhoff’s pointwise ergodic theory, subsequence ergodic
theory, the natural extension map, Hurwitz constants, entropy, the Bernoulli shift, Markov
maps of the unit interval, invariant measures for Markov maps, the set of badly approx-
imable points, relatives of the continued fraction maps – the nearest integer continued
fraction expansion. Non-archemedian continued fractions, the continued fraction expan-
sion in positive characteristic and the Schneider p-adic continued fraction expansion.

Tomislav Pejković (jointly with Yann Bugeaud)
University of Zagreb, Croatia

[pejkovic@math.hr]

Quadratic approximation in Qp

Let p be a prime number. Let w2 and w∗2 denote the exponents of approximation
defined by Mahler and Koksma, respectively, in their classifications of p-adic numbers.
It is well-known that every p-adic number ξ satisfies w∗2(ξ) ≤ w2(ξ) ≤ w∗2(ξ) + 1, with
w∗2(ξ) = w2(ξ) = 2 for almost all ξ. By means of Schneider’s continued fractions, we give
explicit examples of p-adic numbers ξ for which the function w2−w∗2 takes any prescribed
value in the interval (0, 1].
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Vinko Petričević
University of Zagreb, Croatia

[vpetrice@math.hr]

Householder’s approximants and continued fraction expansion
of quadratic irrationals

Let α be a quadratic irrational. It is well known that the continued fraction expansion
of α is periodic. We observe Householder’s approximant of order m− 1 for the equation

(x − α)(x − α′) = 0 and x0 = pn/qn: R
(m)
n = α(pn/qn−α′)m−α′(pn/qn−α)m

(pn/qn−α′)m−(pn/qn−α)m
. We say that R

(m)
n

is good approximant if R
(m)
n is a convergent of α. When period begins with a1, there is a

good approximant at the end of the period, and when period is palindromic and has even
length `, there is a good approximant in the half of the period. So when ` ≤ 2, then every

approximant is good, and then it holds R
(m)
n =

pm(n+1)−1

qm(n+1)−1
for all n ≥ 0. We prove that to

be a good approximant is the palindromic and the periodic property. Further, we define

the numbers j(m) = j(m)(α, n) by R
(m)
n =

pm(n+1)−1+2j

qm(n+1)−1+2j
if R

(m)
n is a good approximant. We

prove that |j(m)| is unbounded by constructing an explicit family of quadratic irrationals,
which involves the Fibonacci numbers.

Mikhail Skopenkov
Institute for information transmission problems of the Russian Academy of Sciences,

Russia
[skopenkov@rambler.ru]

Tiling of a rectangle, alternating current, and continued
fractions

When a square can be tiled by rectangles similar to a given one? To be more precise,
which can be side ratio of such rectangles? The answer to this question involves continued
fractions, and the proof uses alternating-current networks.

The answer was obtained by C. Freiling, M. Laczkovich, D. Rinne and G. Szekeres [3,4].
We give a short physical proof reducing the result to an inverse problem for alternating-
current circuits solved by R. Foster and W. Cauer in 1920s [2].

We are going to see how mathematical theory of electric networks appears naturally in
studies of tilings of a rectangle [1]. Then we move to a more general question — which
polygons can be tiled by rectangles of given shapes — and answer it in certain particular
cases, each time going deeper into the theory of electric networks. For example, we prove
the following new result.

Theorem [5] For a number c > 0 the following 3 conditions are equivalent:

• a rectangle of side ratio c can be tiled by rectangles of side ratio c (not all homo-
thetic to each other);
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• the number c2 is algebraic and all its algebraic conjugates distinct from c2 are
negative real numbers.

• for certain positive rational numbers d1, . . . , dm we have
1

d1c+ · · ·+
1

dmc

= c.

References

[1] R. L. Brooks, C. A. B. Smith, A. H. Stone, and W. T. Tutte, The dissection of rectangles into squares,
Duke Math. J. 7 (1940), 312–340.

[2] R. M. Foster, Academic and Theoretical Aspects of Circuit Theory, Proc. IRE 50:5 (1962), 866–871.
[3] C. Freiling and D. Rinne, Tiling a square with similar rectangles, Math. Res. Lett. 1 (1994), 547–558.
[4] M. Laczkovich and G. Szekeres, Tiling of the square with similar rectangles, Discr. Comp. Geom. 13

(1995), 569–572.
[5] M. Prasolov, M. Skopenkov, Tiling by rectangles and alternating current, J. Combin. Theory A 118:3

(2011), 920–937.

Jörg Thuswaldner (joint work with V. Berthé and W. Steiner)
Montanuniversität Leoben, Austria
[joerg.thuswaldner@unileoben.ac.at]

S-adic words, Rauzy fractals, and torus rotations

In the late 1970s Rauzy observed that classical continued fraction expansions can be
used to show that Sturmian words are natural codings of rotations on the one-dimensional
torus T1 (this was originally proved by Morse and Hedlund using combinatorial methods).
In 1991 Arnoux and Rauzy proposed a class of three letter words (now called Arnoux-
Rauzy words) and conjectured that each Arnoux-Rauzy word is a natural coding of a
rotation on T2. They set up a continued fraction algorithm that is suitable for this setting.
However, up to now the conjecture could only be proved for examples that correspond
to periodic continued fraction expansions. On the other hand, in 2000 Cassaigne, Fer-
enczi, and Zamboni exhibited examples of Arnoux-Rauzy words that cannot be codings
of rotations on T2.

Setting up a general theory for the geometry of S-adic sequences, we are able to prove
that the conjecture of Arnoux and Rauzy is true for almost all Arnoux-Rauzy words (w.r.t.
a natural measure). We also exhibit concrete non-periodic Arnoux-Rauzy words that sat-
isfy this conjecture. Moreover, we give examples for our new theory that correspond to
S-adic words defined in terms of Brun’s continued fraction algorithm.
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Alexey Ustinov
Institute for Applied Mathematics, Khabarovsk, Russia

[ustinov.alexey@gmail.com]

Kloosterman sums and continued fractions

Analytical approach based on the method of trigonometric sums and estimates of
Kloosterman sums allows to solve different problems concerned with classical continued
fractions. The first talk will contain a survey ofresults of this type. The second talk will
be devoted to analogous 3-D tool. It is also based on the estimates of Kloosterman sums
and uses Linnik-Skubenko ideas from their work ”Asymptotic distribution of integral ma-
trices of third order” (1964). In particular this tool allows to study statistical properties
of Minkovski-Voronoi 3-D continued fractions.


