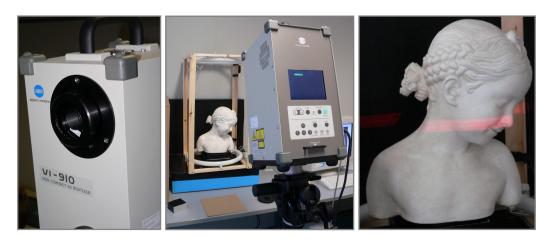
Variational Shape Reconstruction

Pierre Alliez David Cohen-Steiner Yiying Tong Mathieu Desbrun

GEOMETRICA INRIA Sophia-Antipolis Applied Geometry Lab CALTECH

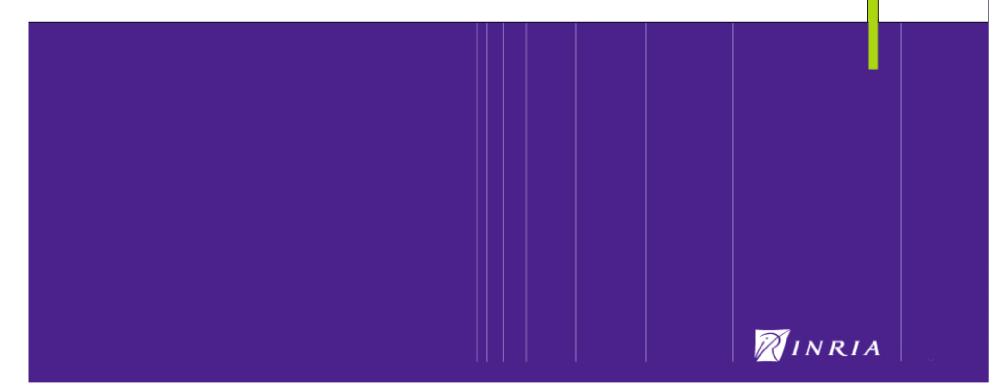
Motivations

- Surface reconstruction from point sets:
 - Unorganized
 - Unoriented (no oriented normals)
 - Non-uniform & sparse sampling
 - Possibly with noise
 - uncertainty in measurements
 - registration noise





Previous Work



Previous Work

Early work:

[Boissonnat 84, Hoppe et al. 92, Curless-Levoy 96]

Delaunay-based

(Crust, Powercrust, Cocone, Tight cocone, ...) [Amenta, Bern, Choi, Dey, Kolluri, Goswami, Giesen]

Deformable models

[Esteve, Sharf]

Spectral approach (normalized cuts) [Kolluri- Shewchuk-O'Brien]

Implicit surfaces:

- RBFs [Carr, Turk, Belyaev, Ohtake, Schlick]
- MLS [Levin, Alexa, Amenta, Kil]
- Poisson reconstruction [Kazhdan-Bolitho-Hoppe-Burns]

Graph-based (min-cuts)

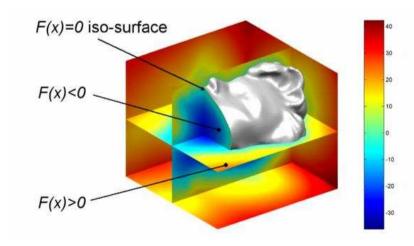
[Boykov-Kolmogorov, Vogiatzis, Paris, Hornung-Kobbelt]

Delaunay-based

Several Delaunay algorithms are provably correct...

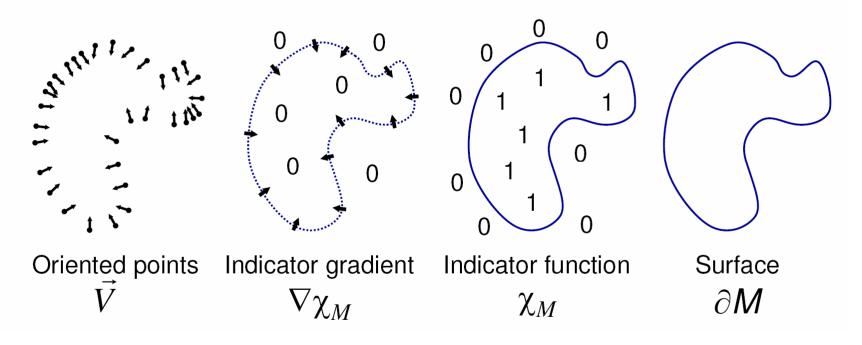
Delaunay-based

- Several Delaunay algorithms are provably correct... in the absence of noise and undersampling.
- Motivates reconstruction by fitting approximating implicit surfaces



Poisson Reconstruction

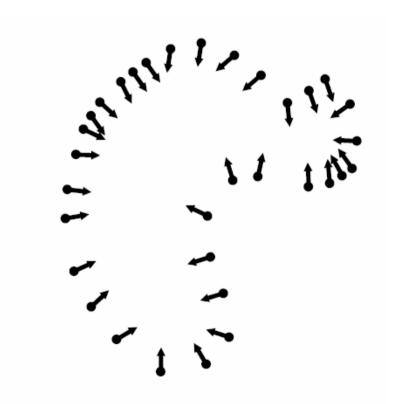
 Find an implicit function such as its gradient best fits a set of oriented normals



[Kazhdan-Bolitho-Hoppe 06]

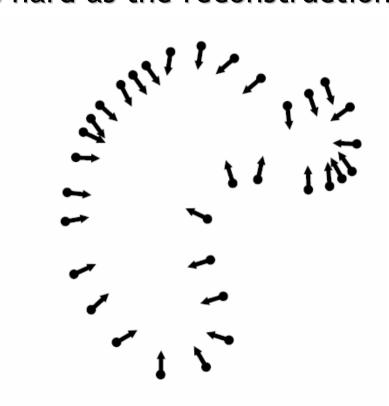
Poisson Reconstruction

- Orienting the normals
 - ill-posed problem?



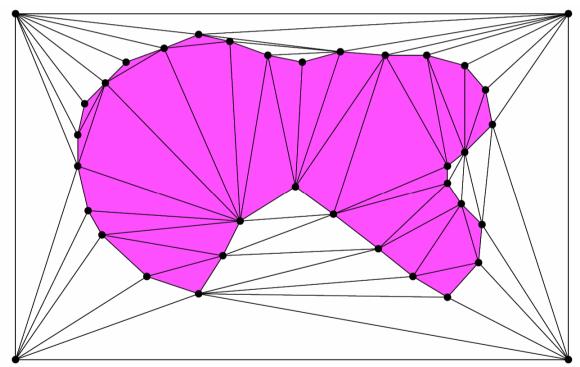
Poisson Reconstruction

- Orienting the normals
 - ill-posed problem?
 - basically as hard as the reconstruction problem.



Spectral Surface Reconstruction

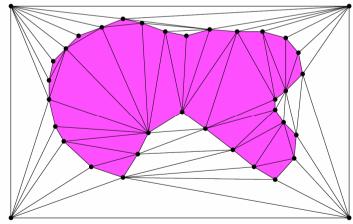
 Use spectral graph partitioning to decide which Delaunay tetrahedra are inside/outside the object.



[Kolluri-Shewchuk-O'Brien 04]

Spectral Surface Reconstruction

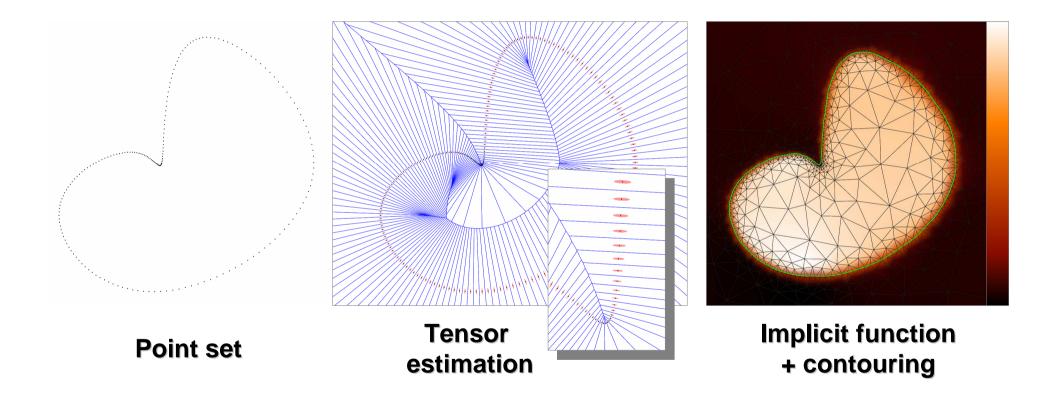
- Use spectral graph partitioning to decide which Delaunay tetrahedra are inside/outside the object.
 - + **global** approach (eigenvalue problem)
 - interpolate subset of data points
 - no control over smoothness



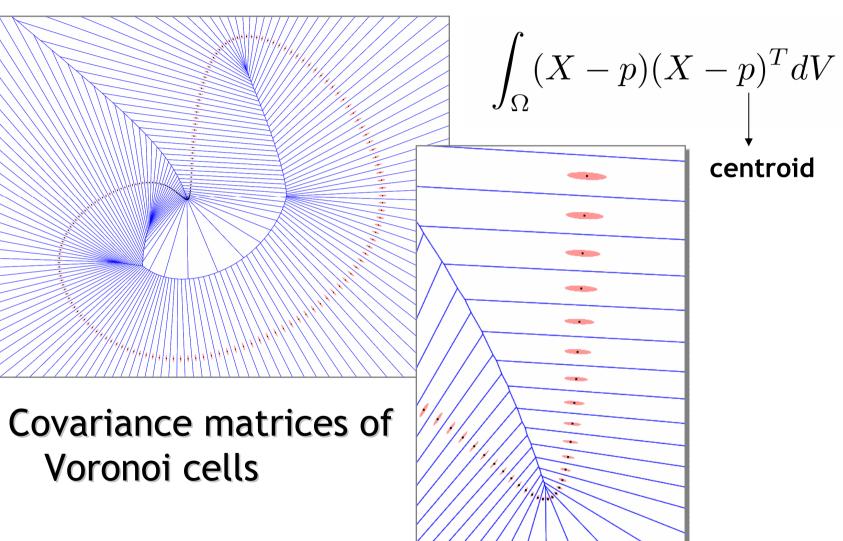
[Kolluri-Shewchuk-O'Brien 04]

Our Approach

- Delegate normal orientation to fitting stage
 - Fit normal *directions*
 - *Reliability* of directions can be used as well
- Offer control of surface smoothness
 - Trades fitting for smoothness
- Output:
 - Watertight
 - Approximating
 - Automatically adapted to sampling quality



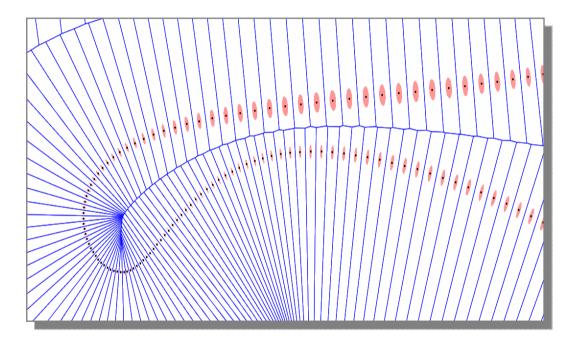
Tensor Estimation

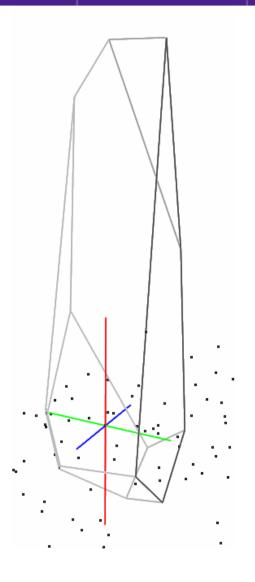


centroid

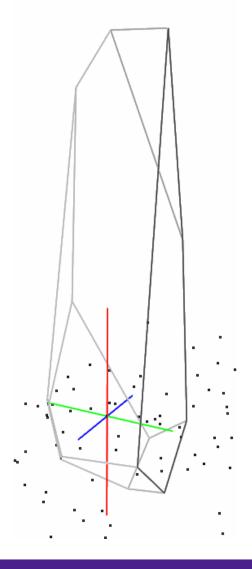
RINRIA

Noise-free Case





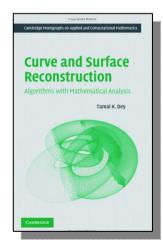
Normal Estimation: Convergence?



[Mitra & Nguyen]

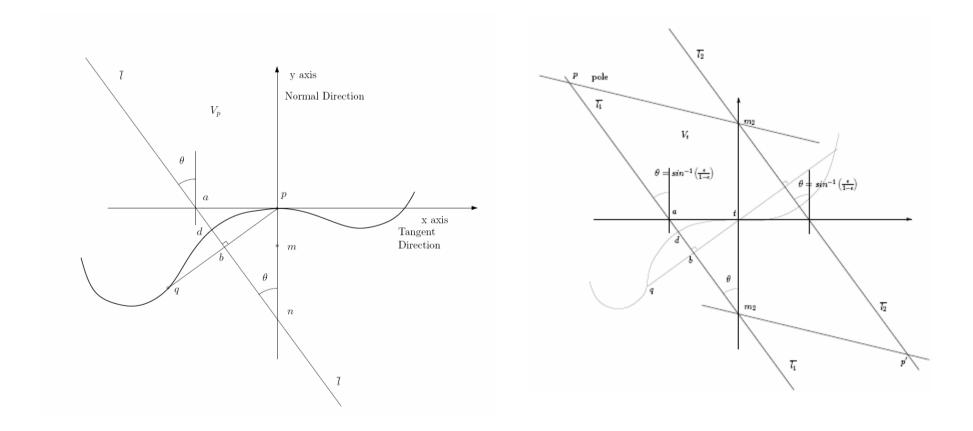
Estimating surface normals in noisy point cloud data. SoCG '03.

[Dey] Curve and Surface Reconstruction : Algorithms with Mathematical Analysis



Normal Estimation: Convergence?

Noise-free case (ε-sampling): yes

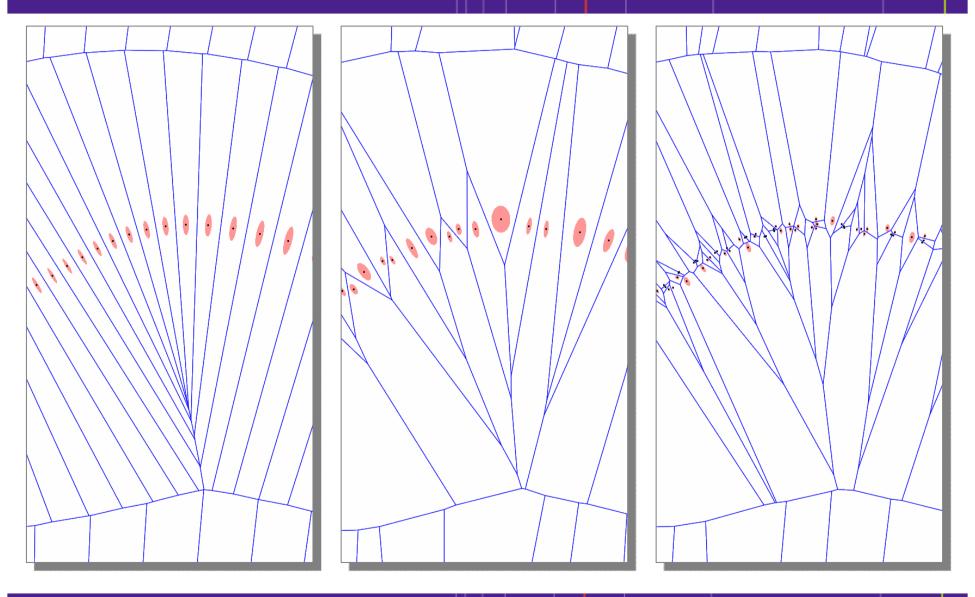


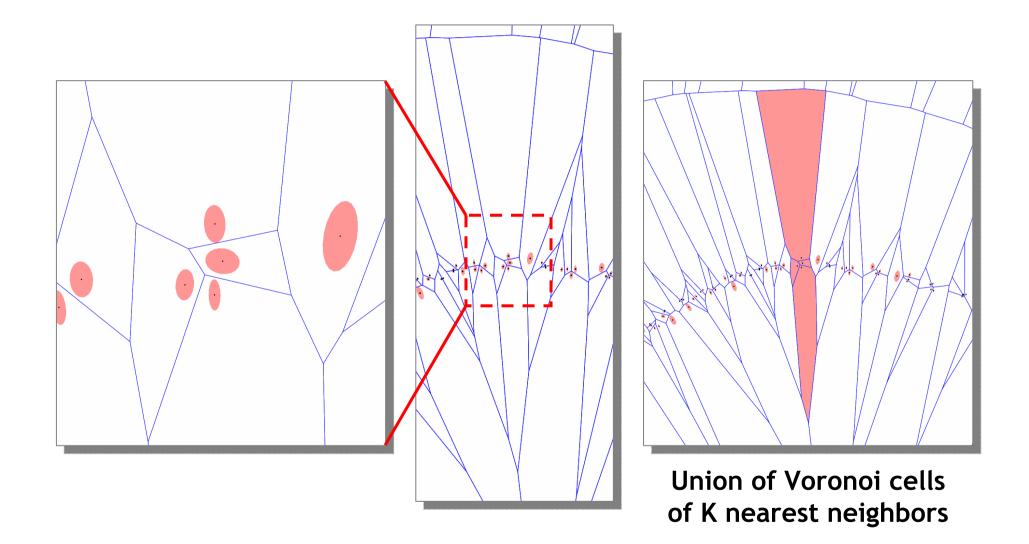
Normal Estimation: Convergence Rate?

Future work:

- Better than
 - point-based PCA and variants?
 - jet fitting?
 - Others
- Noisy case?

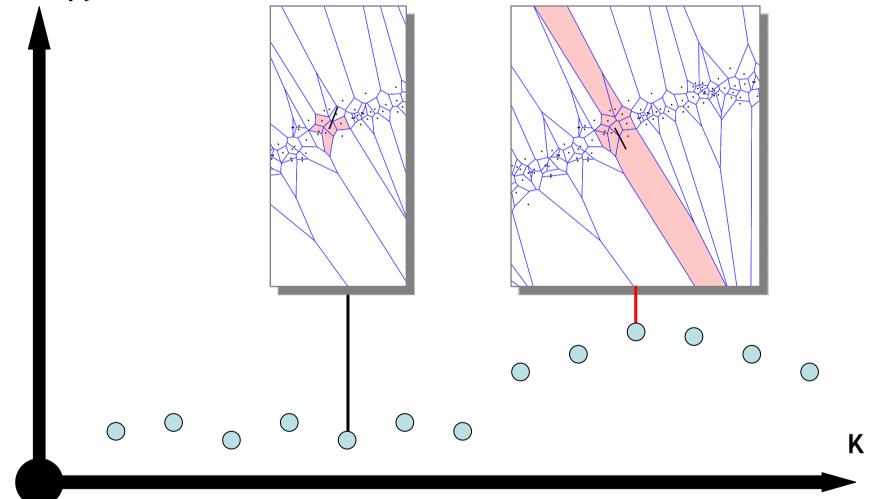
Noise-free vs Noisy



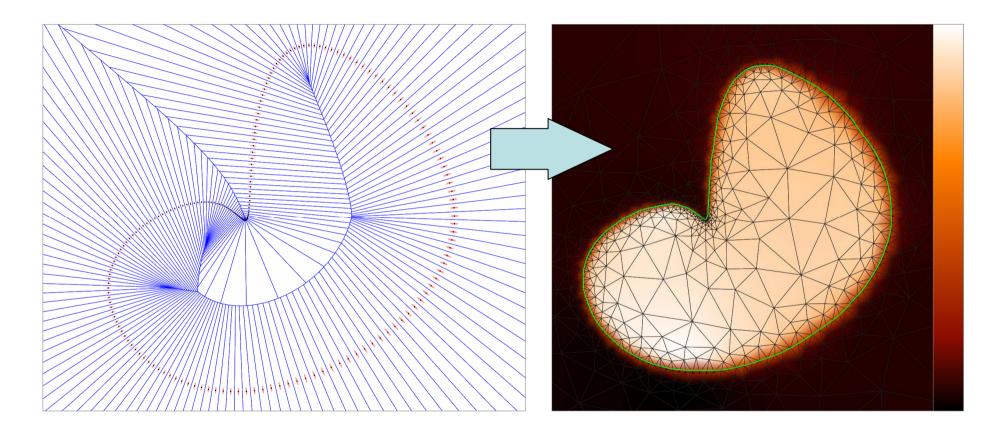


How to choose K?

Anisotropy



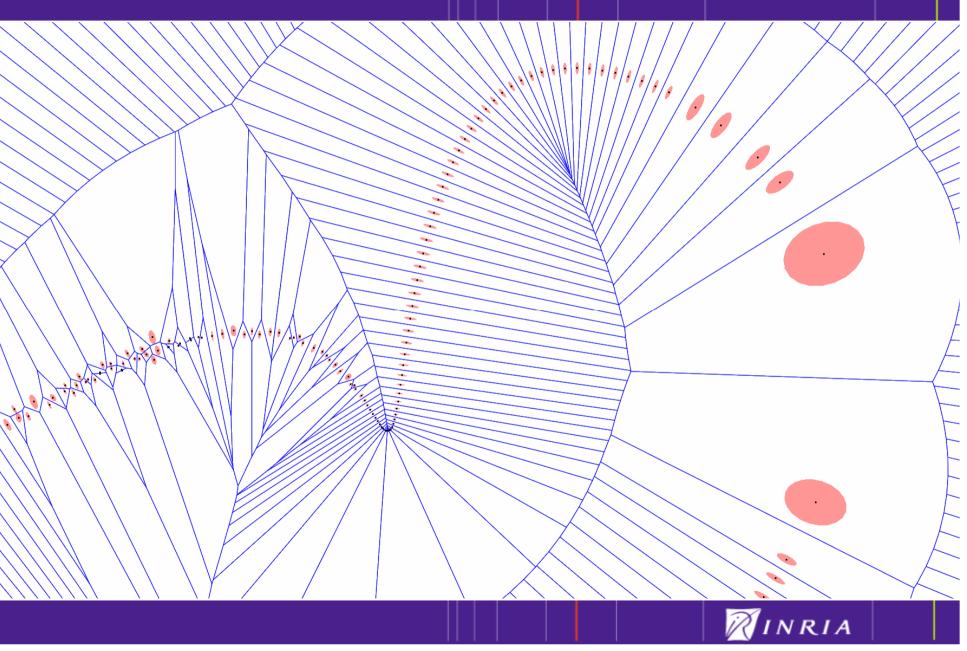
Implicit Function



Tensors

Implicit function

Input (reminder)



Variational Formulation

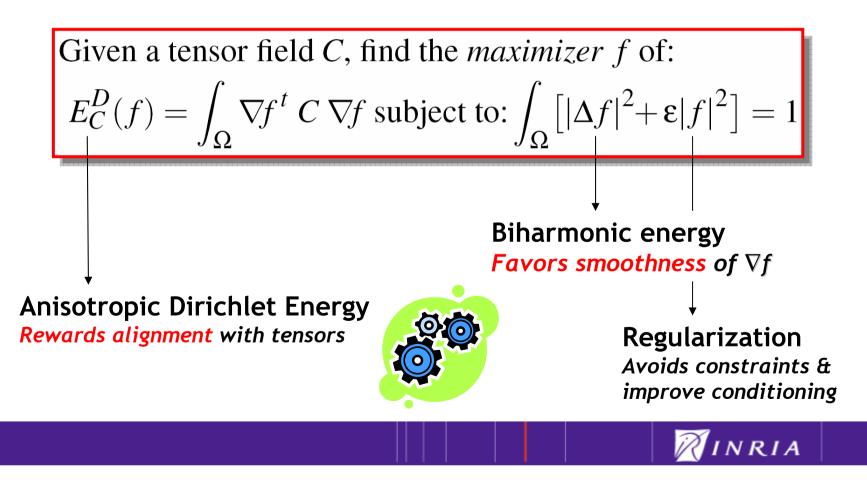
 Find implicit function *f* such that its gradient
∇*f* best aligns to the principal component of the tensors.

Given a tensor field *C*, find the maximizer *f* of: $E_C^D(f) = \int_{\Omega} \nabla f^t C \nabla f \text{ subject to:} \int_{\Omega} \left[|\Delta f|^2 + \varepsilon |f|^2 \right] = 1$ Biharmonic energy *Measures smoothness of* ∇f Anisotropic Dirichlet energy

Measures alignment with tensors

Variational Formulation

 Find implicit function *f* such that its gradient
∇*f* best aligns to the principal component of the tensors.



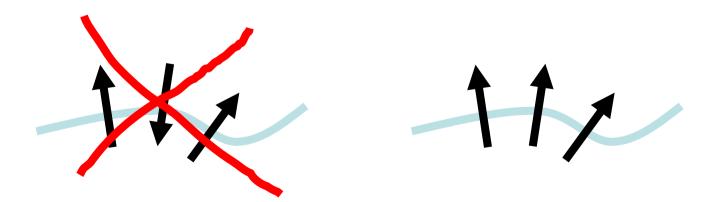
Rationale

- On areas with:
 - anisotropic tensors: favor alignment
 - isotropic tensors: favor smoothness

Rationale

- On areas with:
 - anisotropic tensors: favor alignment
 - isotropic tensors: favor smoothness

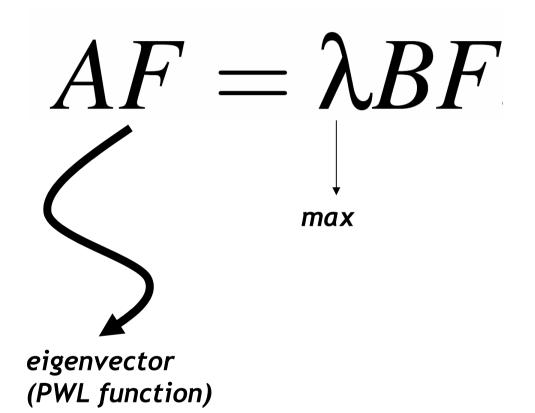
Large aligned gradients + smoothness -> consistent orientation of ∇f



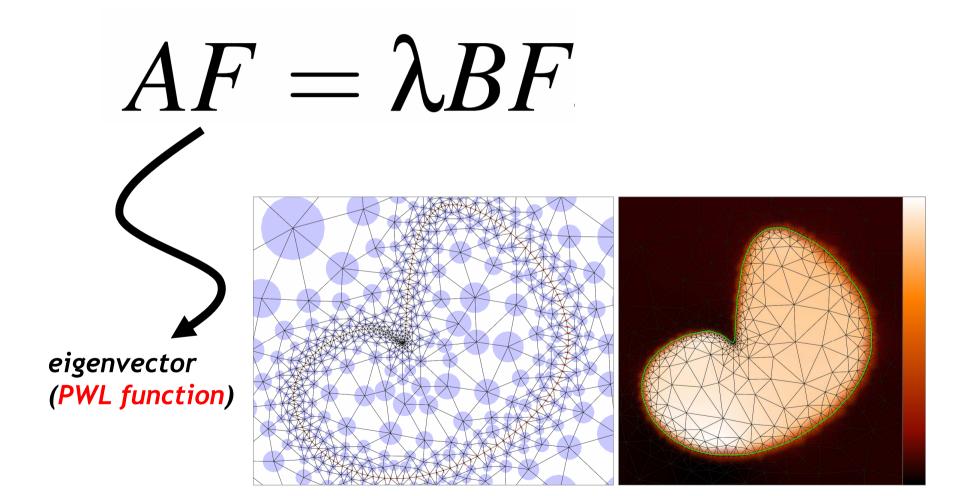
Solver

Given a tensor field C, find the maximizer f of: $E_C^D(f) = \int_{\Omega} \nabla f^t C \nabla f$ subject to: $\int_{\Omega} \left[|\Delta f|^2 + \varepsilon |f|^2 \right] = 1$ A: Anisotropic Laplacian operator $E_C^D(F) \approx F^t A F$ **B:** Isotropic Bilaplacian operator $E^B(f) \approx F^t B F$

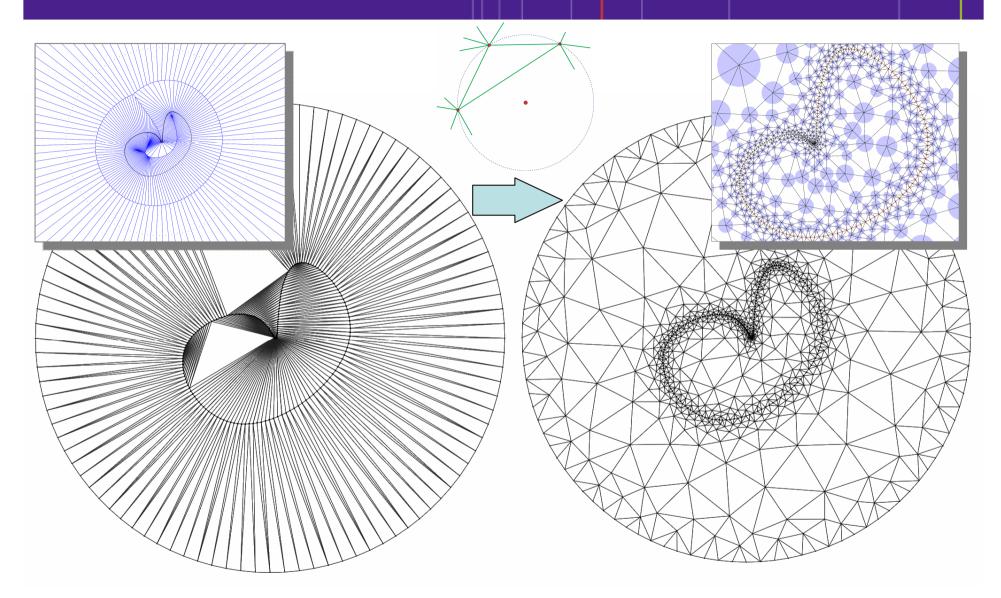
Generalized Eigenvalue Problem

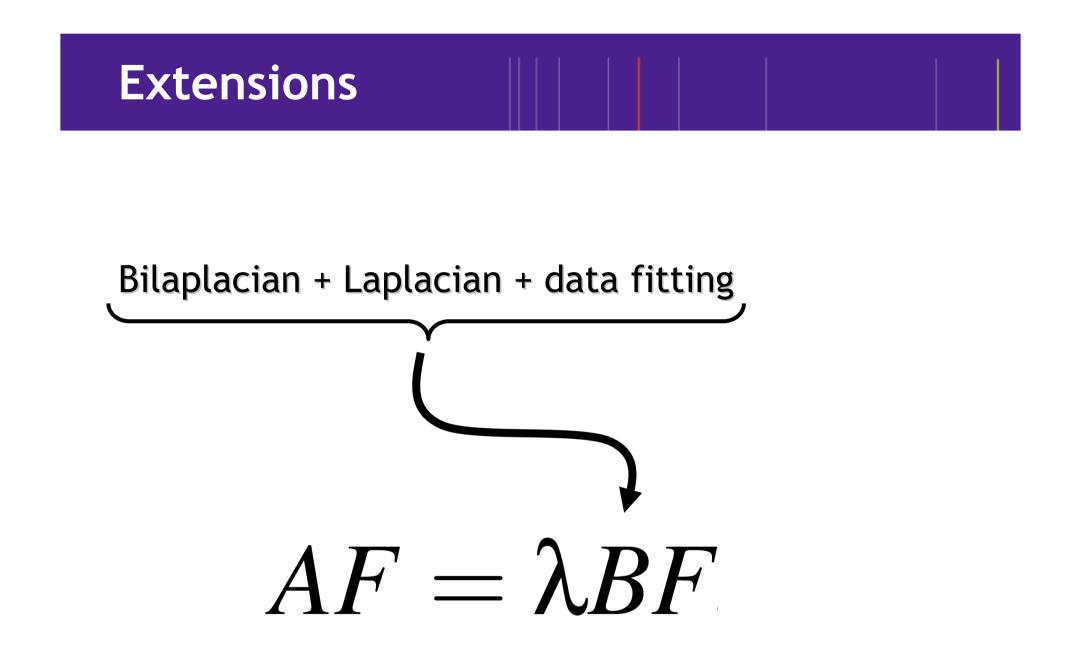


Generalized Eigenvalue Problem



Delaunay Refinement





...Turned into Std Eigenvalue Problem

Compute Cholesky factorization of *B* [TAUCS]

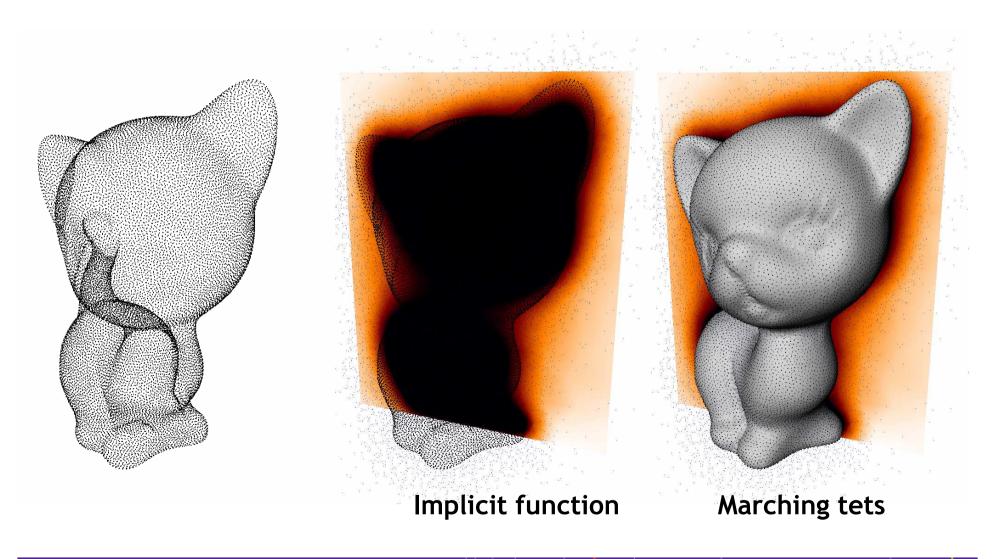
$$B = LL^t$$

$$AF = \lambda LL^{t}F \Leftrightarrow L^{-1}AL^{-t}L^{t}F = \lambda L^{t}F \Leftrightarrow \begin{cases} L^{-1}AL^{-t}G = \lambda G\\ G = L^{t}F \end{cases}$$

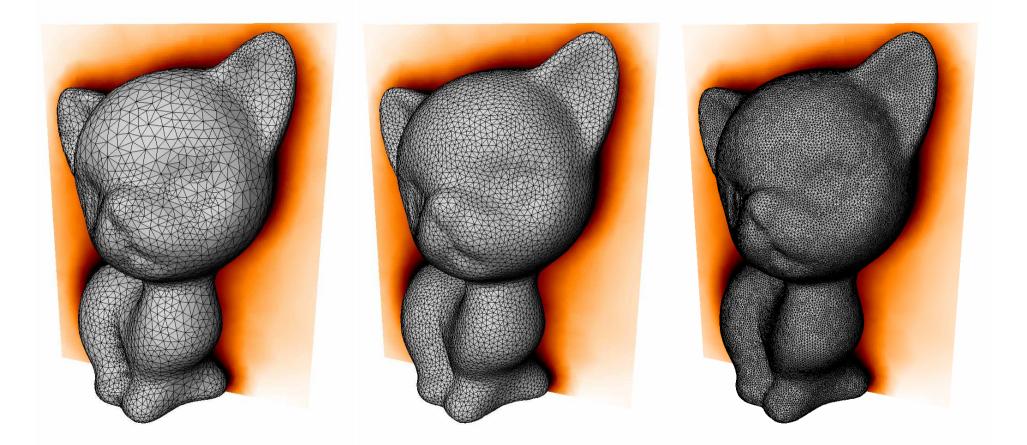
Solver:

Implicitly restarted Arnoldi method [ARPACK++]

Contouring

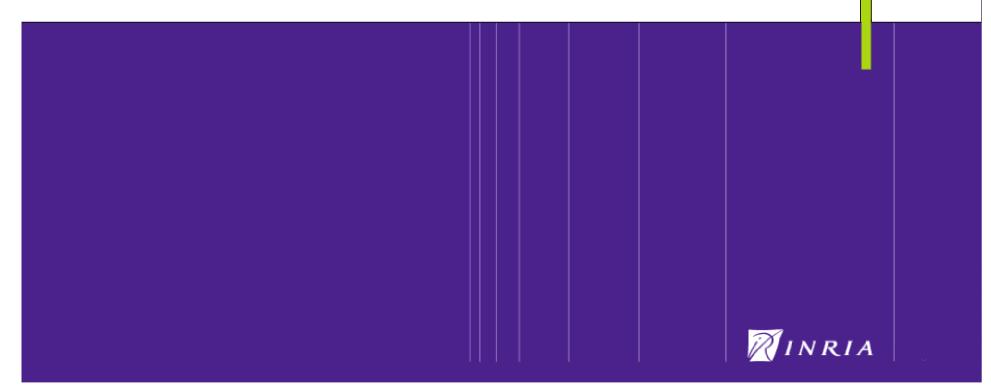


Surface Mesh Generation

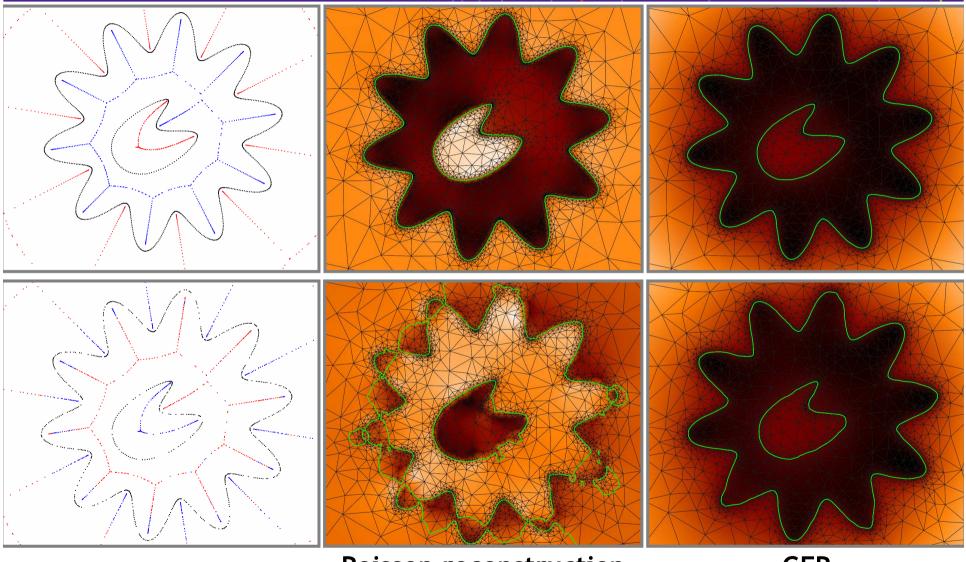


Delaunay-based surface mesh generator [Boissonnat-Oudot, CGAL]

Experiments



vs Poisson Reconstruction



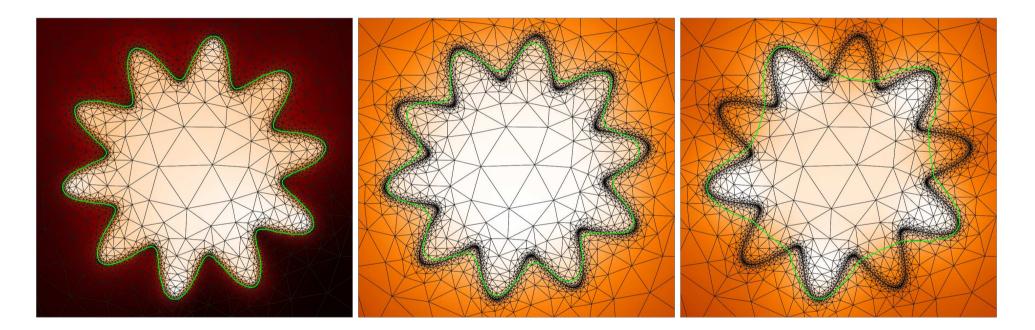
Poisson reconstruction

(on simplicial mesh)

GEP

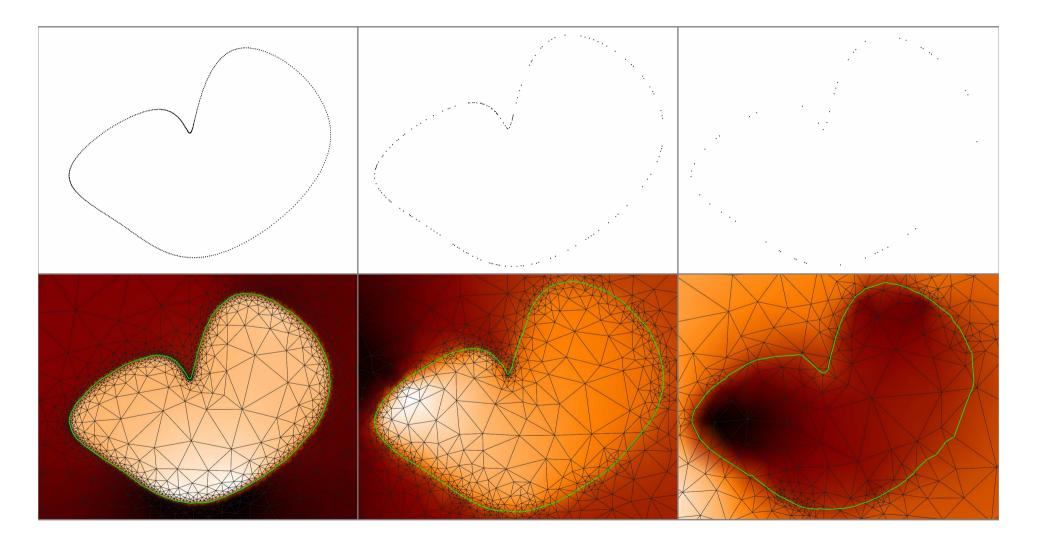
RINRIA

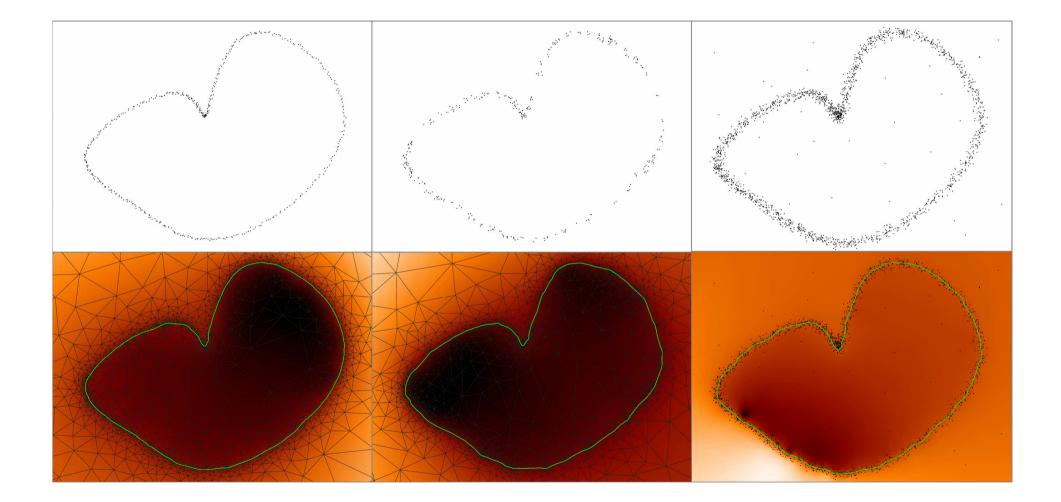
Increasing Bilaplacian



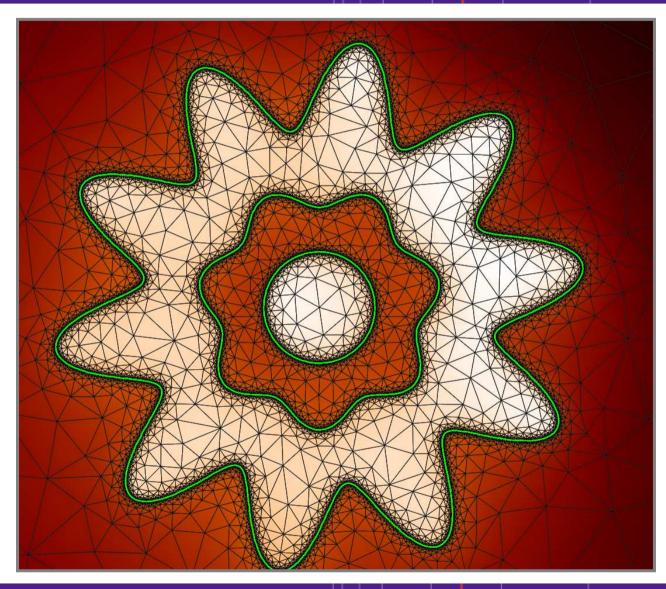
-	Bilaplacian	

Sparse Sampling

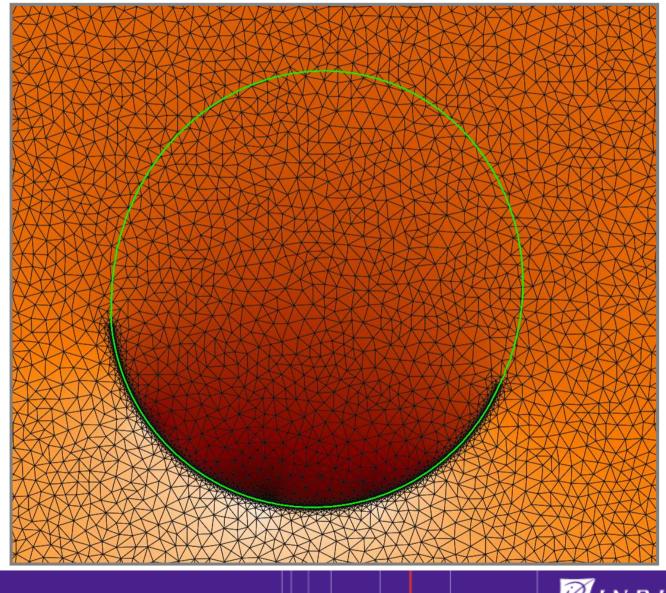




Nested Components

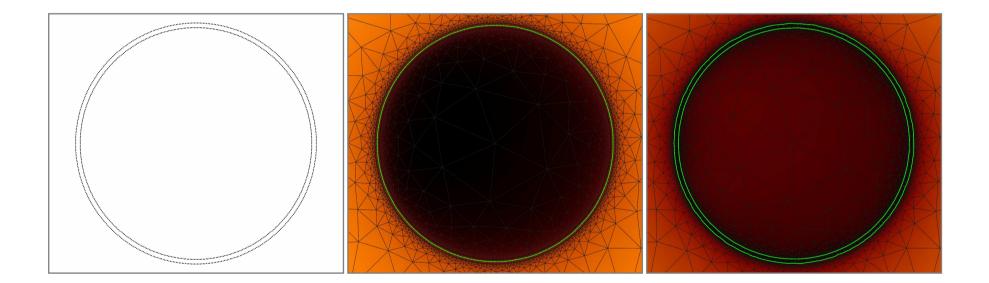


Spline-under-tension Effect

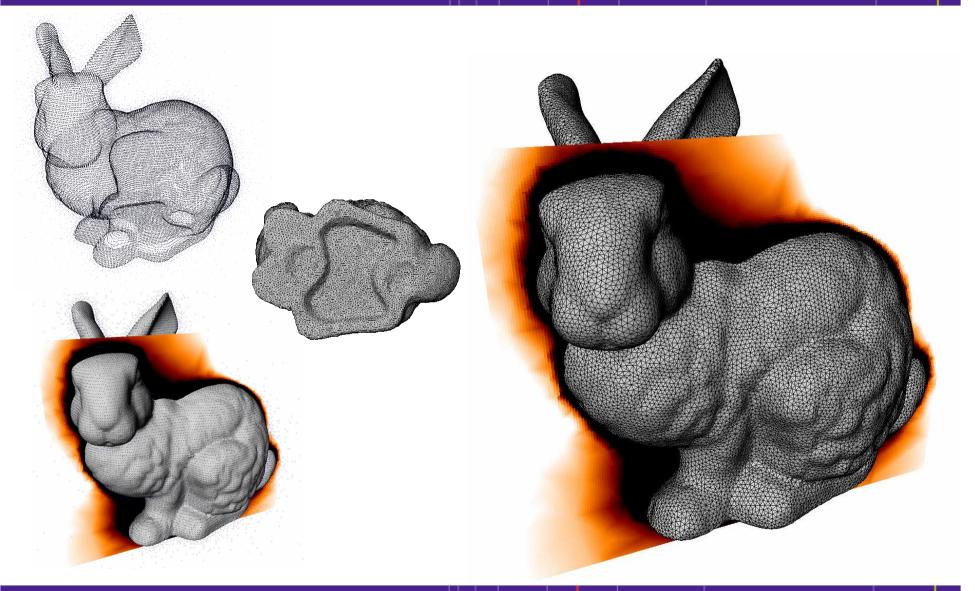


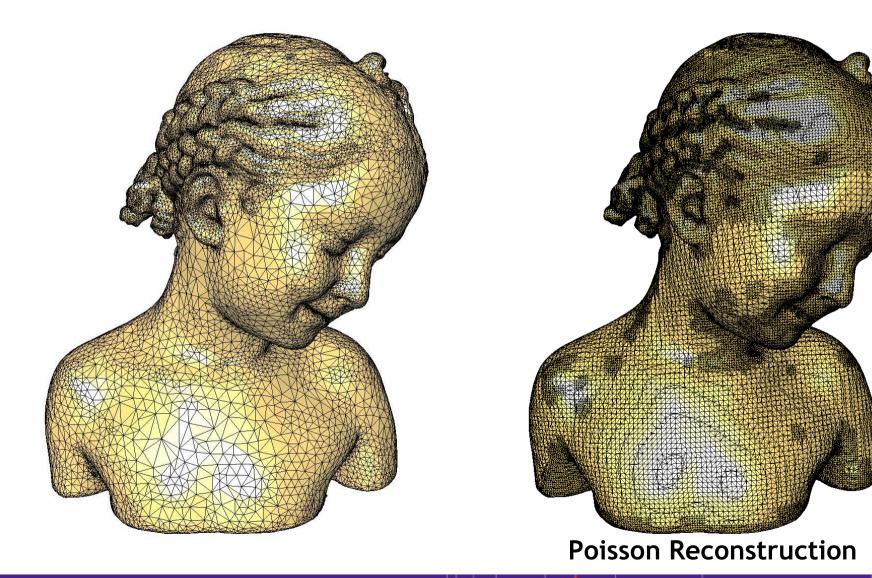
RINRIA

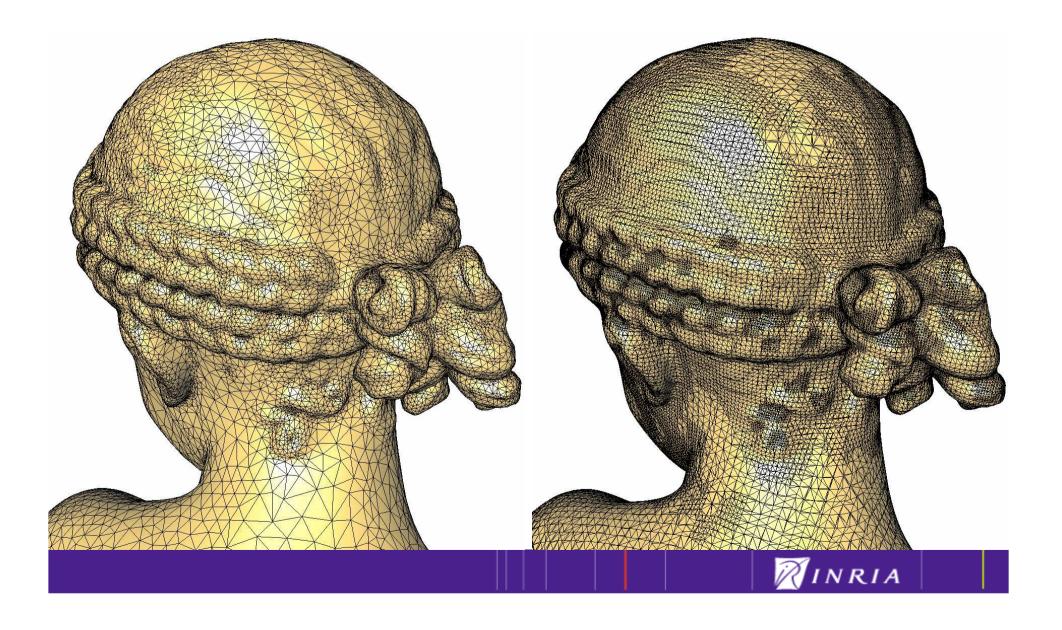
Adjustable Data Fitting

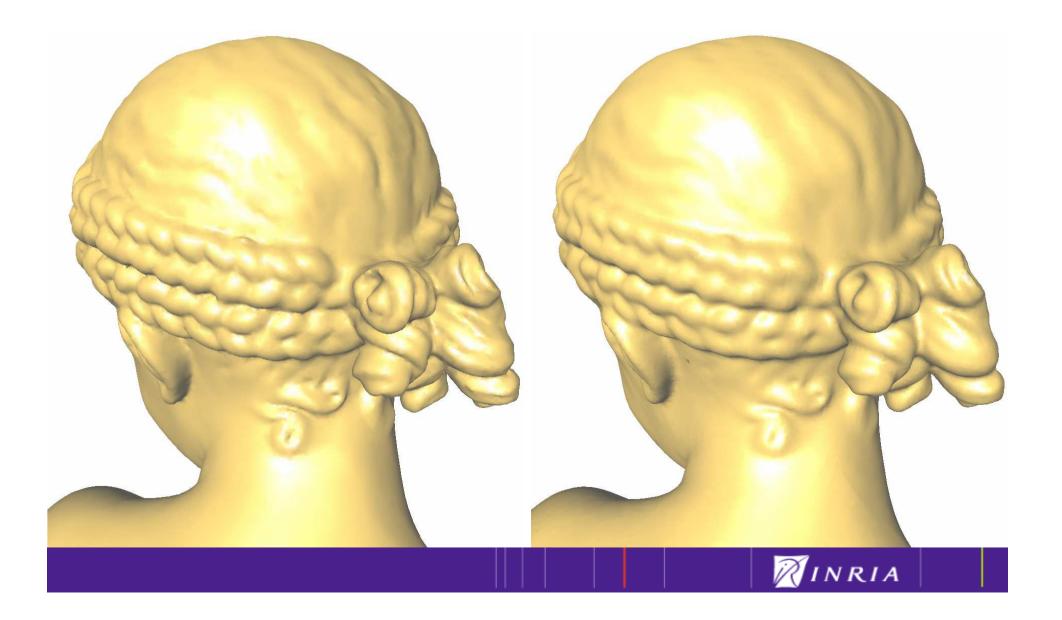


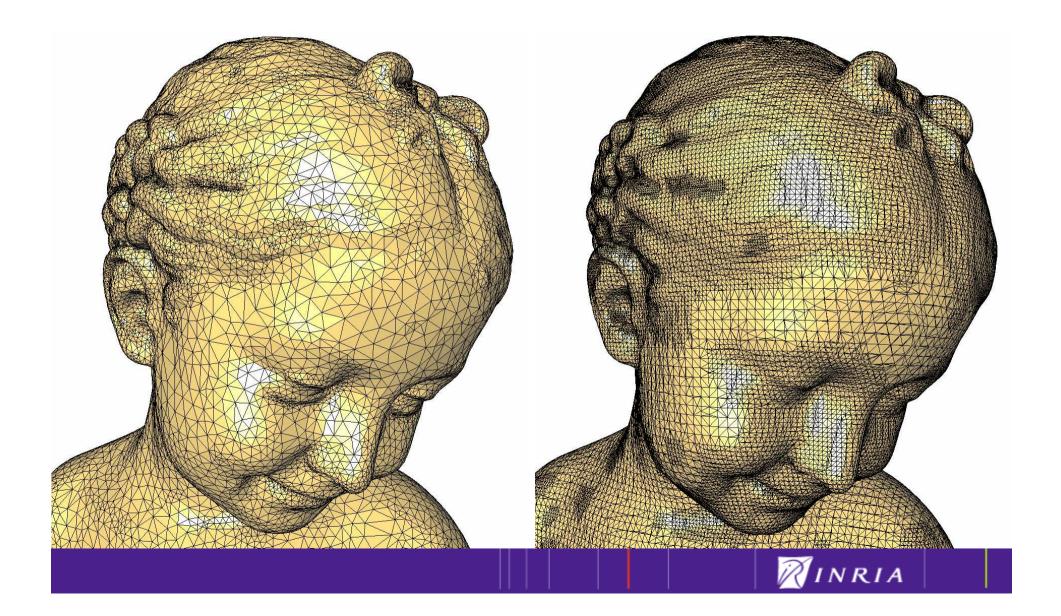
Stanford Bunny

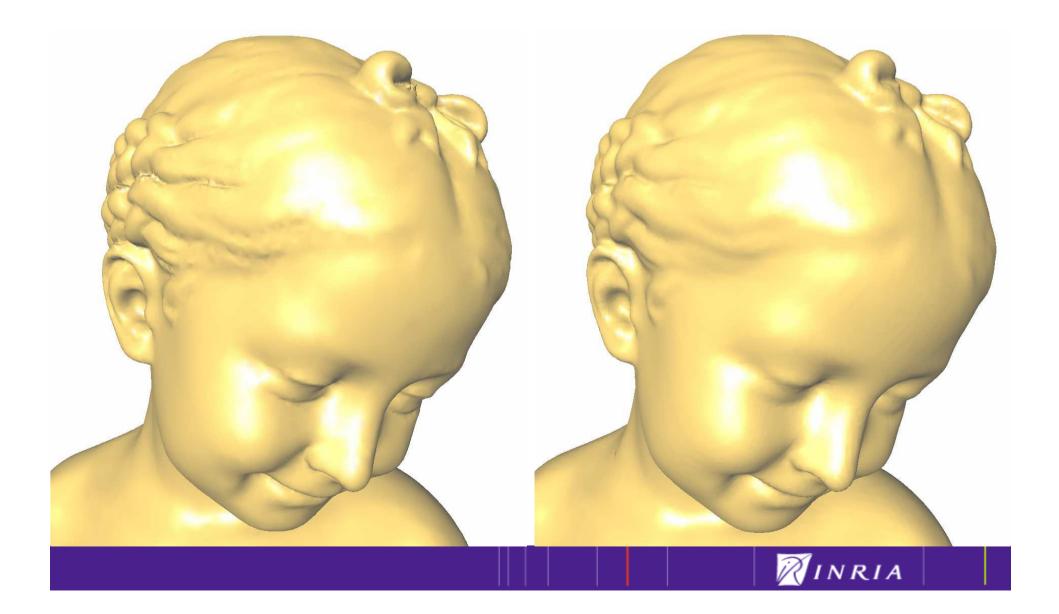




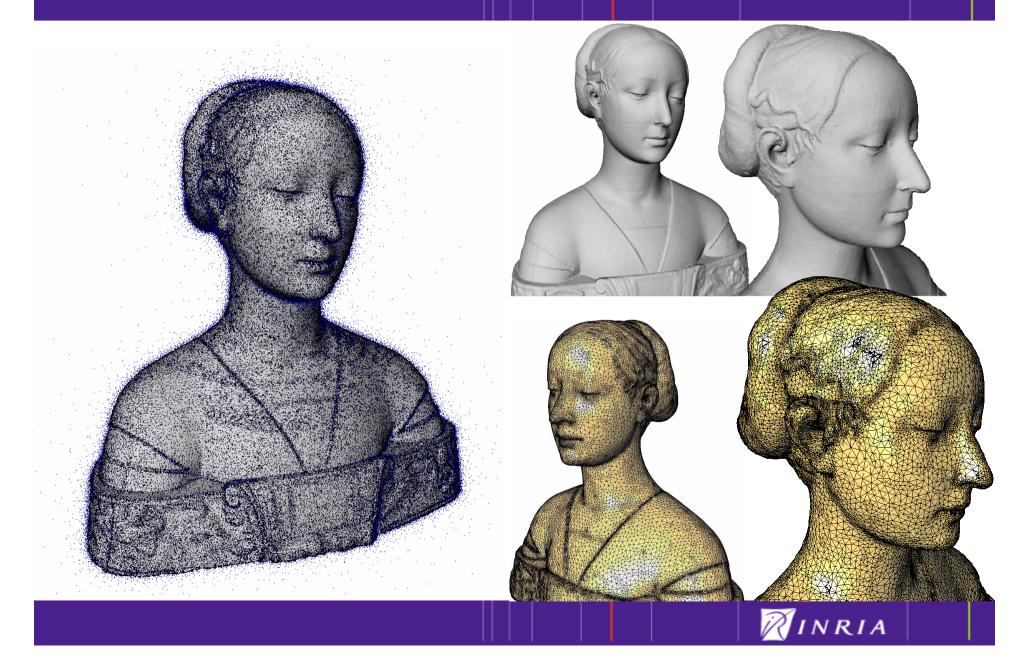




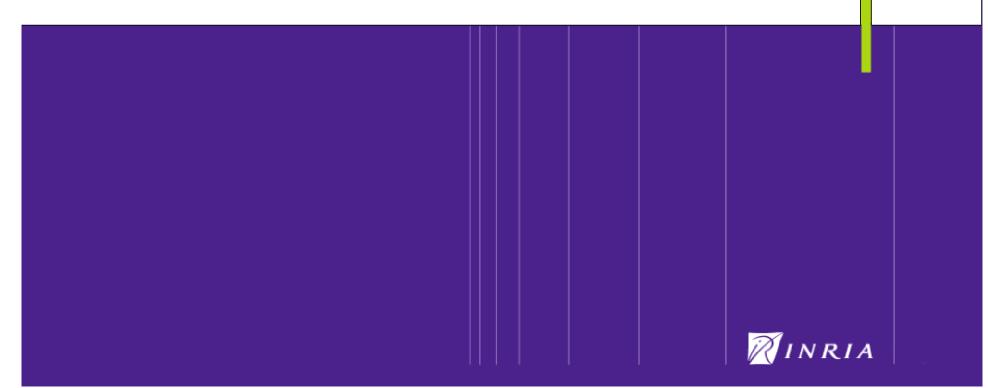




Sforza (250K points)



Conclusion



Conclusion

Pros

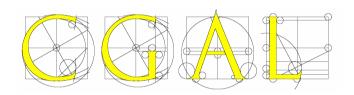
- Handles unoriented point sets
- Approximating
- Adjustable smoothness vs fitting

Cons

- Slow (50x Poisson reconstruction)
- Scalability issues
 - bottleneck Cholesky factorization (max 250K points / 32bit)
 - In-core matrix reordering (METIS)

Future Work

- Analysis of Voronoi-PCA normal estimation
- Improve solver
- CGAL component



Acknowledgements

- David Bommes (RWTH Aachen)
- Mario Botsch (ETH Zurich)

