Discrete Conformal Structures

Boris Springborn (TUB)
Ulrich Pinkall (TUB)
Peter Schröder (Caltech)
THE PROBLEM

Find “nice” texture maps

- simplicial surface
 \[K = \{V, E, T\} \]
- metric data
 \[L = \{l_{ij} | e_{ij} \in E, l_{ij} > 0\} \]

\[V = \{v_i | 1 \leq i \leq n\} \]
\[E = \{e_{ij} | i, j \in V\} \]
\[T = \{t_{ijk} | e_{ij}, e_{jk}, e_{ki} \in E\} \]
THE PROBLEM

Find “nice” texture maps
- simplicial surface
 \[K = \{V,E,T\} \]
- metric data
 \[L = \{l_{ij} | e_{ij} \in E, l_{ij} > 0\} \]
- new (flat) metric \(\tilde{L} \)
The Problem

Find “nice” texture maps
- simplicial surface
 \[K = \{V, E, T\} \]
- metric data
 \[L = \{l_{ij} | e_{ij} \in E, l_{ij} > 0\} \]
- new (flat) metric \(\tilde{L} \)
The Problem

Find “nice” texture maps

- simplicial surface
 \[K = \{V, E, T\} \]
- metric data
 \[L = \{l_{ij} | e_{ij} \in E, l_{ij} > 0\} \]
- new (flat) metric \(\tilde{L} \)
Ansatz

Seek conformally equivalent metric

- **data:** simplified complex & lengths
- **output:** new metric (i.e., lengths)

\[\tilde{g} = e^{2u} g \quad K \neq 0 \quad \rightarrow \quad \tilde{K} = 0 \]

- ignore boundary for the moment

new metric

conformal factor

original metric

ignore boundary for the moment
Ansatz

Seek conformally equivalent metric

- data: simpl. complex & lengths
- output: new metric (i.e., lengths)
- $\tilde{g} = e^{2u}g$ \quad $K \neq 0 \rightarrow \tilde{K} = 0$
- variables at vertices

 $u(v_i) = u_i$ \quad $\tilde{l}_{ij} = l_{ij}e^{u_i+u_j}$
Ansatz

Seek conformally equivalent metric

- data: simpl. complex & lengths
- output: new metric (i.e., lengths)
 \[\tilde{g} = e^{2u} g \quad K \neq 0 \longrightarrow \tilde{K} = 0 \]
- variables at vertices
 \[u(v_i) = u_i \quad \tilde{l}_{ij} = l_{ij} e^{u_i+u_j} \]
- goal: desired angle sums
 \[\Theta(v_i) = \sum_{t,ijk} \alpha_{jk}^i(u_i, u_j, u_k) = \tilde{\Theta}_i \]
Non-Linear Problem

Find $u(V)$ to satisfy angle sum targets from lengths to angles

$\forall i \in V : \Theta_i = \sum_{t_{ijk} \ni v_i} \alpha^{i}_{jk}(u_i, u_j, u_k)$

$2 \tan^{-1} \sqrt{\frac{(-a+b+c)(a+b-c)}{(a-b+c)(a+b+c)}}$

Watch out for triangle inequality!
Non-Linear Problem

Find $u(V)$ to satisfy angle sum targets

- from lengths to angles

$$\forall i \in V : \tilde{\Theta}_i = \sum_{t_{ijk} \ni v_i} \alpha_{jk}^i (u_i, u_j, u_k)$$

- ... a miracle occurs ...

This system of equations can be integrated!
The Energy

Find minimum of a convex energy

- Milnor’s Lobachevsky function

\[\Pi(x) = - \int_0^x \log 2|\sin t|dt \]

\[\frac{l_{jk}}{R} = 2 \sin \alpha_{jk} \]

\[\downarrow \]

\[\log l_{jk} - \log R = \log 2 \sin \alpha_{jk} \]
The Energy

Find minimum of a convex energy

- Milnor’s Lobachevsky function
- for each triangle

\[f(x_{12}, x_{23}, x_{31}) = \alpha_1 x_{23} + \alpha_2 x_{31} + \alpha_3 x_{12} + \Pi(\alpha_1) + \Pi(\alpha_2) + \Pi(\alpha_3) \]

\[x_{ij} = \lambda_{ij} + u_i + u_j \]

[Diagram: Triangle with logarithmic input lengths]
Find minimum of a convex energy

- Milnor’s Lobachevsky function
- for each triangle

\[
\frac{d}{du_i} f(x_{ij}, x_{jk}, x_{ki}) = \pi - \alpha_i
\]

\[
E(u) = \sum_{t_{ijk} \in T} (f(u_i, u_j, u_k) - \pi (u_i + u_j + u_k)) + \sum_{\nu_i \in V} \tilde{\Theta}_i u_i
\]
The Energy

Properties

- convex: Hessian is pos. semi-def.

\[u^T H u = \sum_{e_{ij} \in E} (\cot \alpha_{jk}^i + \cot \alpha_{kj}^l)(u_k - u_j)^2 \]

only one term for boundary edges
The Energy

Properties

- convex: Hessian is pos. semi-def.
 \[u^T H u = \sum_{e_{ij} \in E} \left(\cot \alpha_{jk}^i + \cot \alpha_{kj}^l \right) (u_k - u_j)^2 \]
- solution exists \(\Rightarrow \) is unique \(\min E(u) \)
- gradient flow is curvature flow
 \[\frac{d}{dt} u(t) = -\nabla E(u(t)) = \tilde{K} - K(t) \]
The Energy

Properties

- convex: Hessian is pos. semi-def.
 \[u^T H u = \sum_{e_{ij} \in E} \left(\cot \alpha_{jk}^i + \cot \alpha_{kj}^l \right) (u_k - u_j)^2 \]

- solution exists \(\Rightarrow \) is unique \(\min E(u) \)

- gradient flow is curvature flow
 \[\frac{d}{dt} u(t) = -\nabla E(u(t)) = \tilde{K} - K(t) \]

- what about triangle inequality?!
Domain of Definition

Not just any u value is cool...

- triangle inequality

legal range

$u_1 + u_2 + u_3 = 0$

$\lambda_{12} = \lambda_{23} = \lambda_{31} = 0$
Domain of Definition

Not just any u value is cool...

- triangle inequality
- extend definition

$$\alpha = \Re \left(2 \tan^{-1} \sqrt{\frac{(-a+b+c)(a+b-c)}{(a-b+c)(a+b+c)}} \right)$$

Real part only

Functional remains C^1 in u

$u_1 + u_2 + u_3 = 0$

$\lambda_{12} = \lambda_{23} = \lambda_{31} = 0$
Domain of Definition

Not just any u value is cool...

- triangle inequality
- extend definition
 \[\alpha = \text{Re} \left(2 \tan^{-1} \sqrt{\frac{-(a+b+c)(a+b-c)}{(a-b+c)(a+b+c)}} \right) \]
- minimum may occur at illegal values...
- conditions for existence guarantee?
Boundary Conditions

Fixing variables

- fix u_i let Θ_i vary
 - $u_i = 0$: isometric bndry.
 - nice for cut-boundaries!
 - unknown cone angles
 - arbitrary topology
- fix Θ_i let u_i vary
 - rectangle, disk...
Convex optimization

- Newton-Steihaug trust region
Convex optimization
- Newton-Steinhaug trust region
- Petsc/TAO library
- SSOR precon for cotan system
- layout: dual spanning tree
 - achieves 10^{-9} to 10^{-13} acc.
 - alternatively: Dirichlet problem
Conformal Equivalence

From continuous to pair of meshes

\[\tilde{g} = e^{2u} g \]
\[\tilde{l}_{ij} = e^{ui} l_{ij} e^{uj} \]

equivalently:

\[\tilde{c}_{ij} = \tilde{l}_{il} \tilde{l}_{lj}^{-1} \tilde{l}_{jk} \tilde{l}_{ki}^{-1} \]

\[e^{-uj} \quad e^{uj} \]
Conformal Equivalence

From continuous to pair of meshes

\[\tilde{g} = e^{2u} g \]

\[\tilde{l}_{ij} = e^{ui} l_{ij} e^{uj} \]

equivalently:

\[\tilde{c}r_{ij} = \tilde{l}_{il} \tilde{l}_{lj}^{-1} \tilde{l}_{jk} \tilde{l}_{ki}^{-1} = cr_{ij} \]

Length cross ratios are preserved
WHY $u = 0$ ON BOUNDARY?

In the continuous setting

- conformally equivalent metric
 \[\tilde{K} = e^{-2u}(K - \Delta u) \quad \text{flat} \quad \Rightarrow \Delta u = K \]
- choose “least varying”:
 \[
 \min_{\text{flat}} \int |du|^2
 \Rightarrow u|_{\partial M} = c
 \]
WHY \(u = 0 \) ON BOUNDARY?

In the continuous setting
- conformally equivalent metric
 \[
 \tilde{K} = e^{-2u}(K - \Delta u) \quad \text{flat} \implies \Delta u = K
 \]
- choose “least varying”:
 \[
 \min_{\text{flat}} u \int |du|^2
 \]
 \[
 \iff u|_{\partial M} = c
 \]
Dual Functional

Angles/lengths are dual variables

- functional in angles

\[
f(\alpha_i, \alpha_j, \alpha_k) = \lambda_{ij} \alpha_k + \lambda_{jk} \alpha_i + \lambda_{ki} \alpha_j + \Lambda(\alpha_i) + \Lambda(\alpha_j) + \Lambda(\alpha_k)
\]

\[
E(\alpha) = \sum_{t_{ijk} \in T} f(\alpha_i, \alpha_j, \alpha_k)
\]

Original logarithmic lengths

- \(\alpha_{jk} > 0\)
- \(\alpha_{jk}^i + \alpha_{ki}^j + \alpha_{ij}^k = \pi\)
- \(\sum_{t_{ijk} \ni i} \alpha_{jk}^i = \tilde{\theta}_i\)
DUAL FUNCTIONAL

Angles/lengths are dual variables

- functional in angles

\[
E(\alpha) = \sum_{t_{ijk} \in T} f(\alpha_i, \alpha_j, \alpha_k)
\]

- length cross ratios invariant

\[
\nabla E = 0 \iff \frac{l_{il}l_{jk}}{l_{il}l_{ki}} = \frac{\tilde{l}_{il}\tilde{l}_{jk}}{\tilde{l}_{il}\tilde{l}_{ki}}
\]

\[
\alpha^i_{jk} > 0 \\
\alpha^i_{jk} + \alpha^j_{ki} + \alpha^k_{ij} = \pi \\
\sum_{t_{ijk} \ni i} \alpha^i_{jk} = \tilde{\Theta}_i
\]
THE BIG PICTURE

Discrete conformal structure

- simplicial mesh
 \[z_{il} z_{lj}^{-1} z_{jk} z_{ki}^{-1} \]
- preserve:
 - phase: circle patterns
 - can’t read off angles directly...
 - magnitude: new functional
 - CAN read off lengths directly!
TODO LIST

Future work
- conditions for existence
 - intrinsic Delaunay not required!
- automatic cone singularity placement
 - u provides potential hook

\[\Delta u^0 = K \]

- first Newton step
- sparse approximation problem