

Approximate and Exact Modeling of General Developable Surfaces Alla Sheffer

Difficult to model with existing tools

Ruled Surface: Generated by continuous motion of straight line in

Developable Ruled surface with constant normals along rulings Warped

Background

Gauss map of developable surface is 1D

Developable

Not Developable

Torsal Ruled Developable

General Developable

Approximation

Input: Non-developable surface

Output: (Nearly-)Developable approximation

Torsal developables - Dual space

General developables

- Gauss curvature minimization

[Pottmann & Randrup:98, Chen:99,Peternell:04]

[Wang & Tang '04]

Context – Garment Modeling [Decaudin'06]

1. 3D from sketch

 Output: nondevelopable surface + seams 2. Piecewise developable approximation

- Keep parts connected
- Output: "paper garment" + 2D patterns

3. Introducing Physics

Procedural

Developable Approximation - Idea

- Use dual space
- BUT do not assume normal map/Blaschke image is curve
- Use local approximation ONLY

Local Approximation in Dual Space

- Locally approximate normal map
 - Inspired by MLS
- Project normals to approximation
- Adjust vertex positions to satisfy new normals

• Observation:

Curve network on unit sphere is locally approximated by arcs + branching points = developable surface locally approximated by *developable of constant slope* (DCS)

- DCS constant angle between surface normal and axis
 - Planes
 - Generalized cylinders

• Cones Defined by normal and angle $\langle N, \theta \rangle$

Method overview

- Input: mesh (with seams/darts)
- Output: developed mesh
- While not developable (enough)
 - For each triangle
 - Compute best locally approximating DCS
 - Use neighbourhood
 - Bound by normal deviation/radius
 - Anisotropic
 - Rotate to fit DCS
 - Reconcile vertices

Compute approximating DCS

$$\min_{N,\theta} \sum_{n_j} \left[\frac{\left(n_j \cdot N - \cos \theta \right)}{2} \right]^2 subj. to \left\| N \right\| = 1, \left| \cos \theta \right| < .5$$

Rotate to proxy - define new normal \tilde{n} & move vertices

$$\min_{v'_{i},d} \sum_{i=1}^{3} \|v_{i} - v'_{i}\|^{2} subj. to v'_{i} \cdot \tilde{n} - d = 0$$

Support positional constraints

Reconcile vertices

- Keep orientation as much as possible
 Similar to [Sumner & Popovic:04, Yu:04]
- Solve $\min_{\widetilde{v}} \sum_{j=1}^{T} \left\| \widetilde{V}_{j} V_{j}^{-1} I \right\|_{F}^{2}$ Global preserve seams intact

1st iteration

2nd iteration

Must start from "fairly" developable surface

How much developable is developable enough?

L² stretch: 1.01

[Julius et al. 2005]

Model developable surface "from scratch"
Record on user intent

Based on user intent

Related Work

Torsal developables (require ruling direction)

[Wang & Tang:05] [Aumann:04] [Chu & Sequin:02] [Pottmann & Wallner:01] [Wang:07] General height-field developables

[Frey:01]

Modeling from Boundaries

- Algorithm to compute developable surfaces interpolating given boundaries
- Control surface characteristics
 Allows search space navigation
- Combine with simple sketching interface
 - Creating boundaries
 - Modeling hints

Key Observations: Developability and Convexity

 On developable surfaces, tangent plane along ruling is almost always a *supporting* plane [LayL72]

- Warped Ruled
 inearly all rulings
 lie inside local convex hull

Triangulation approximating warped surface

 Want boundary triangulations that approximate smooth developable surfaces

- On polyline CH, all edges are locally convex
- Smooth ruled surface contained by its boundary's CH
- CH of smooth curve consists of torsal developable surfaces and planar regions [Sedykh:86]
- Curve that lies on CH separates it into two developable envelopes [Sedykh:86]
- Key Idea Look for interpolating developable regions on boundary CH

- Identify charts that correspond to torsal surfaces
 - Sequences of triangles with one or more boundary edges

Desirable Triangulation Properties

Developable Nearly all edges locally convex - "a given"

Fair

Lower sum of squared dihedral angles

1. Expand Search Space

- Always segment CH into charts
- Discard charts with sharp dihedral angles

2. Navigate Search Space

- Compute triangulations which are as predictable and fair as possible
- Use branch and bound:
 - Store partial solutions (covers)
 - At each step, process most promising cover
 - Discard not-promising or redundant covers

Charts

Red and blue cover is redundant

Queue

Add To Queue

Best Triangulation

Termination

Best Triangulation

Results – Art Noveau Paper & Gold Leaf Lamp

Results - Pavillion

- First robust and easy to use system for modeling general developable surfaces
 - No user expertise required

Summary

- Allows user interaction and optimization of different properties
- Based on connection between developable surfaces and CH of their boundary

Approximate v.s. Exact

- Further investigation of linkage between developables and convex hulls
- Understanding singularities

