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 Distance Functions 
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Distance function 

 Given: geometric 
object F (curve, 
surface, solid, …)  

 Assigns to each point 
the shortest distance 
from F 

 Level sets of the 
distance function are 
trimmed offsets 

F 

p 
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Graph surfaces of distance functions 

 Graph surfaces of 
distance functions: 
(developable) surfaces 
of constant slope 

 Each tangent plane 
has the inclination 
angle 45 degrees  

 Not smooth at the 
base curve and at the 
cut locus 
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GEOMETRIE 

squared distance function 

 For geometric optimization algorithms: local 
quadratic approximation of the squared 
distance function 

 Outside cut locus 
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GEOMETRIE 

local quadratic approximation of 
the function d2 

   quadratic Taylor 
approximant Fd of 
the squared distance 
function at p: 

 

                                     
 

   x1, x2  are the 
coordinates in the   
Frenet frame at the 
normal footpoint 
c(t0) of p. 
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GEOMETRIE 

quadratic approximation of d2 

Taylor approximant  
                                     
 

 
for d=0 (p on the curve): 
 
 
 
Squared distance to the tangent at c(t0)=p. 
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GEOMETRIE 

Second order approximant 
of the squared distance function 

to a surface 

 The second order 
Taylor approximant Fd 
of the squared 
distance function to a 
surface at a point p is 
expressed in the 
principal frame at the 
normal footpoint s via 
 
 

e1 

e2 

e3 

s(u,v) 
p 

s 
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GEOMETRIE 

Data structure 

 Adaptive data structure whose cells carry local 
quadratic approximants of the squared distance 
function 
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 Curve and surface fitting 
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Squared Distance Minimization I    
(H.P., M. Hofer, S. Leopoldseder,  

Wenping Wang) 
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GEOMETRIE 

Squared Distance Minimization  

 B-spline curve or surface is iteratively deformed 
in the squared distance field of the model 
shape M (shape to be approximated: point 
cloud, mesh, implicit curve/surface,…) 

 Errors measured orthogonal to M 
 
 

M 
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GEOMETRIE 

Algorithm overview 

 evaluate current B-
spline form at 
discrete number of 
‘sensor’ points sk 

 compute local 
quadratic 
approximants of the 
squared distance 
field d2 to M at sk 

 change control 
points such that 
sensors come closer 
to M (done with help 
of quadratic 
approximants to d2) 

Iteration: 
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GEOMETRIE 

Initialization and sensor points 

 Choose an initial shape s     
(B-spline curve or surface) 

 compute sufficient number of 
`sensor points sk’ on s 
(evaluation at chosen 
parameter values) 

 Note: if control points are 
displaced with vectors ci 
(knots and weights fixed), the 
new sensor locations sk

* 
depend linearly on ci 

sk 
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GEOMETRIE 

local quadratic approximants at 
sensor points 

 At each sensor 
point sk, 
compute a 
nonnegative 
local quadratic 
approximant to 
the squared 
distance field of 
model shape 
 

 sk 
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GEOMETRIE 

move closer to model shape 

 Compute 
displacement 
vectors ci of the 
control points such 
that sensors come 
closer to model 
shape by minimizing 
 
 
 

 This is a quadratic 
function in ci 
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GEOMETRIE 

Remarks 
 
 For regularization and avoidance of 

overlappings/foldings of the final shape, 
an adequately weighted smoothing term 
Fs can be added to the functional, e.g. 
for surfaces: 

 
    
   Amounts to minimization of quadratic 

function 



17 www.geometrie.tuwien.ac.at 

GEOMETRIE 

Example: curve approximation 

 Displacement 
polygons of sensor 
points show that 
later moves are 
mainly in 
tangential direction 

 Related to the 
computation of a 
good 
parameterization 
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GEOMETRIE 

Example: Offset approximation 

Sensor points do NOT move towards offset along normals  
of the progenitor curve 
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GEOMETRIE 

SDM, TDM, PDM 

 SDM employs curvature at 
closest point to compute 2nd 
order approximation of squared 
distance function 

 TDM uses only squared 
distance to tangent at footpoint 
(requires regularization and 
stepsize control) 

 PDM (mostly used) employs 
squared distances to footpoint 

 TDM regularized with a PDM 
term works very well  

M 
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GEOMETRIE 

SDM, TDM, PDM 

 SDM: Newton  algorithm with quadratic 
convergence 

 TDM: Gauss-Newton iteration for nonlinear 
least squares problem; quadratic convergence 
for zero residual problem and good initial 
position; requires regularization (add multiple 
of identity matrix to approximate Hessian or 
add a PDM term with low weight) and step 
size control 

 PDM: only linearly convergent and prone to be 
trapped in local minimizer 
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GEOMETRIE 

Example: 
NURBS surface approximation 

Model surface (gold) and 
initial position of active  
NURBS surface (blue) 

Final position of active  
NURBS surface  
(after 5 iterations). 
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GEOMETRIE 
Approximation with ruled surface 

 
• active B-spline surface of degree (1,n) 
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GEOMETRIE 

Approximation by a piecewise ruled 
surface 
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GEOMETRIE 

Application of ruled surface 
approximation 

hot wire cutting 
(styrofoam) 

wire EDM 
(metal) 
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Squared Distance Minimization II 
(W. Wang, D. Cheng, Y. Liu, H. P.)  
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GEOMETRIE 

Another type of SDM 

 Error measurement orthogonal to the active 
curve/surface 

 Squared distance field (quadratic approximants) 
attached to the moving curve/surface 

 Quasi-Newton method (neglects rotation of 
tangent and change of curvature) 

d2=(X0-P)T.Q.(X0-P) d2=(X0-PD)T.Q.(X0-PD) 
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GEOMETRIE 

simplifications 

 TDM: measures the error via squared 
distance to tangent at closest point; 
requires regularization and step size 
control 

 PDM (standard approach): measures 
error via squared distance to closest 
point 

 TDM regularized with a PDM term (small 
weight) works very well 
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GEOMETRIE 

Example 1: Non-uniform data 

SDM after 8 iterations Initial position 
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GEOMETRIE 

Example 2: Thick point cloud 

SDM after 31 iterations Initial position 
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GEOMETRIE 

Noisy data set; 50 iterations 

 

Initial 
position 

TDM 
no regularization 

PDM 
SDM 
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Comparison of PDM and SDM 
after 50 iteration steps 

 Point Distance Min. (PDM)  SDM 
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Comparison: PDM vs. SDM 

 Target shape and 
Initial position 

PDM after 20 iterations SDM after 20 iterations 
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GEOMETRIE 

Convergence behavior 

 Standard method (PDM): linear convergence 
 SDM: quadratic  convergence 

PDM SDM 

3D visualization of  
the curve evolution 


	Foliennummer 1
	Distance function
	Graph surfaces of distance functions
	squared distance function
	local quadratic approximation of the function d2
	quadratic approximation of d2
	Second order approximant�of the squared distance function to a surface
	Data structure
	Foliennummer 9
	Squared Distance Minimization I   �(H.P., M. Hofer, S. Leopoldseder, �Wenping Wang)
	Squared Distance Minimization 
	Algorithm overview
	Initialization and sensor points
	local quadratic approximants at sensor points
	move closer to model shape
	Remarks
	Example: curve approximation
	Example: Offset approximation
	SDM, TDM, PDM
	SDM, TDM, PDM
	Example:�NURBS surface approximation
	Approximation with ruled surface
	Approximation by a piecewise ruled surface
	Application of ruled surface approximation
	Squared Distance Minimization II�(W. Wang, D. Cheng, Y. Liu, H. P.) 
	Another type of SDM
	simplifications
	Example 1: Non-uniform data
	Example 2: Thick point cloud
	Noisy data set; 50 iterations
	Comparison of PDM and SDM after 50 iteration steps
	Comparison: PDM vs. SDM
	Convergence behavior

