Distance Functions




Distance function

= Glven: geometric
object F (curve,
surface, solid, ...)

= Assigns to each point
the shortest distance
from F

s Level sets of the
distance function are
trimmed offsets




Graph surfaces of distance functions

= Graph surfaces of
distance functions:
(developable) surfaces
of constant slope

= Each tangent plane
has the inclination
angle 45 degrees

= Not smooth at the
base curve and at the
cut locus




sguared distance function
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WIEN

quadratic approximation of the squared

distance function

= For geometric optimization algorithms: local
= Outside cut locus
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TU local quadratic approximation of
WiEwn the function d?

AN

]

quadratic Taylor
approximant F, of
the squared distance
function at p:

X{, X, are the
coordinates In the
Frenet frame at the
normal footpoint

c(ty) of p.




TU|  quadratic approximation of d2 Ag
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Taylor approximant

d

2 2
xry + x
d—[) 1 2

Fy(ay,20) =
for d=0 (p on the curve):

Fy(xy, 29) = 25

Squared distance to the tangent at c(t,)=p.
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U Second order approximant A
en]  of the squared distance function Soere

to a surface

The second order
Taylor approximant F
of the squared
distance function to a
surface at a point p Is
expressed in the
principal frame at the
normal footpoint s via
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TU Data structure Ag

WIEN
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= Adaptive data structure whose cells carry local
quadratic approximants of the squared distance
function
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Curve and surface fitting
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Squared Distance Minimization |
(H.P., M. Hofer, S. Leopoldseder,
Wenping Wang)
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Squared Distance Minimization Ag

GEOMETRIE

= B-spline curve or surface is iteratively deformed
In the squared distance field of the model
shape M (shape to be approximated: point
cloud, mesh, implicit curve/surface,...)

s Errors measured orthogonal to M

www.geometrie.tuwien.ac.at 11
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Algorithm overview A

GEOMETRIE

lteration:

evaluate current B-
spline form at
discrete number of
‘sensor’ points s,

compute local
quadratic
approximants of the
squared distance
field d?to M at s,

change control
points such that
sensors come closer
to M (done with help
of quadratic
approximants to d?)

d;
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Initialization and sensor points Ag

GEOMETRIE

= Choose an initial shape s o—o
(B-spline curve or surface) (v \;‘
= compute sufficient number of
~sensor points s’ on s &

(evaluation at chosen
parameter values)

= Note: if control points are
displaced with vectors c;
(knots and weights fixed), the
new sensor locations s~
depend linearly on c;

Sk
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TU local quadratic approximants at
WiEN sensor points

GEOMETRIE

= At each sensor
point s,
compute a
nonnegative
local quadratic
approximant to
the squared
distance field of
model shape

www.geometrie.tuwien.ac.at 14
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move closer to model shape Ag

GEOMETRIE

= Compute
displacement
vectors c; of the
control points such
that sensors come
closer to model
shape by minimizing

N
F=> Fi(L(di+ec,...,dy+¢p))
k=1

*

= This is a quadratic d'z(é
function in c;
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TU Remarks A

LB GEOMETRIE

= For regularization and avoidance of
overlappings/foldings of the final shape,
an adequately weighted smoothing term
F. can be added to the functional, e.g.
for surfaces:

F, = / / (siu + 2531_, + siT_,)d-?Ld-?,r

Amounts to minimization of quadratic
function

www.geometrie.tuwien.ac.at 16



Example: curve approximation A

WIEN GEOMETRIE

-I
F
==

= Displacement
polygons of sensor
points show that
later moves are
mainly in
tangential direction

= Related to the
computation of a
good
parameterization
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Example: Offset approximation A
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Sensor points do NOT move towards offset along normals

of the progenitor curve
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TU SDM, TDM, PDM Ag
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= SDM employs curvature at
closest point to compute 2nd
order approximation of squared
distance function

= DM uses only squared
distance to tangent at footpoint
(requires regularization and
stepsize control)

= PDM (mostly used) employs
squared distances to footpoint

= DM regularized with a PDM
term works very well

=&
A
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TU SDM, TDM, PDM A
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= SDM: Newton algorithm with quadratic
convergence

= [DM: Gauss-Newton iteration for nonlinear
least squares problem; guadratic convergence
for zero residual problem and good initial
position; requires regularization (add multiple
of identity matrix to approximate Hessian or
add a PDM term with low weight) and step
size control

= PDM: only linearly convergent and prone to be
trapped in local minimizer

www.geometrie.tuwien.ac.at 20



Example:
WiEn NURBS surface approximation

GEOMETRIE

"""l'l%'l'l'l' Final position of active

NURBS surface

Model surface (gold) and
Initial position of active
NURBS surface (blue)
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Approximation with ruled surface
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TU| Approximation by a piecewise ruled A
S surface
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Application of ruled surface ‘a\!
WIEN apprOXimatiOn

GEOMETRIE

hot wire cutting wire EDM
(styrofoam) (metal)
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Squared Distance Minimization |1
(W. Wang, D. Cheng, Y. Liu, H. P.)



TU Another type of SDM A

LB GEOMETRIE

s Error measurement orthogonal to the active
curve/surface

= Squared distance field (quadratic approximants)
attached to the moving curve/surface

= Quasi-Newton method (neglects rotation of
tangent and change of curvature)

% Xo d2:(XO-P)T-Q-(XO—P) ..._:\Xo dz:(XO'PD)T'Q'(XO'PD)

(b)
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TU simplifications Ag

GEOMETRIE

= TDM: measures the error via squared
distance to tangent at closest point;
requires regularization and step size
control

= PDM (standard approach): measures
error via sguared distance to closest
point

= TDM regularized with a PDM term (small
weight) works very well

www.geometrie.tuwien.ac.at 27
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Example 1: Non-uniform data A
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Initial position SDM after 8 iterations
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m Example 2: Thick point cloud
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Initial position SDM after 31 iterations
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- 50 Iterations

Noisy data set

GEOMETRIE

TU

Initial
position

30
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TU Comparison of PDM and SDM
WiEnN after 50 iteration steps

GEOMETRIE

= Point Distance Min. (PDM)
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Comparison: PDM vs. SDM Ag

WIEN

0
i
2
3 Target shape and
¢ Initial position
o
0 : T}l
A | |
PDM after 20 iterations SDM after 20 iterations
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U Convergence behavior A
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= Standard method (PDM): linear convergence
= SDM: quadratic convergence

100
100

3D visualization of

the curve evolution
PDM SDM
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