Distance Functions

Distance function

- Given: geometric object F (curve, surface, solid, ...)
- Assigns to each point the shortest distance from F
- Level sets of the distance function are trimmed offsets

Graph surfaces of distance functions

- Graph surfaces of distance functions: (developable) surfaces of constant slope
- Each tangent plane has the inclination angle 45 degrees
- Not smooth at the base curve and at the cut locus

- For geometric optimization algorithms: *local quadratic approximation of the squared distance function*
- Outside cut locus

local quadratic approximation of the function d²

quadratic Taylor approximant F_d of the squared distance function at p:

$$F_d(x_1, x_2) = \frac{d}{d - \rho} x_1^2 + x_2^2$$

 x_1 , x_2 are the coordinates in the Frenet frame at the normal footpoint $c(t_0)$ of p.

Taylor approximant

$$F_d(x_1, x_2) = \frac{d}{d - \rho} x_1^2 + x_2^2$$

for d=0 (p on the curve):

$$F_d(x_1, x_2) = x_2^2$$

Squared distance to the tangent at $c(t_0) = p$.

Data structure

 Adaptive data structure whose cells carry local quadratic approximants of the squared distance function

Curve and surface fitting

Squared Distance Minimization I (H.P., M. Hofer, S. Leopoldseder, Wenping Wang)

- B-spline curve or surface is iteratively deformed in the squared distance field of the model shape M (shape to be approximated: point cloud, mesh, implicit curve/surface,...)
- Errors measured orthogonal to M

Algorithm overview

Iteration:

- evaluate current Bspline form at discrete number of 'sensor' points s_k
- compute local quadratic approximants of the squared distance field d² to M at s_k
- change control points such that sensors come closer to M (done with help of quadratic approximants to d²)

- Choose an initial shape s (B-spline curve or surface)
- compute sufficient number of
 concor points s / op s
 - *`sensor points s_k'* on s (evaluation at chosen parameter values)
- Note: if control points are displaced with vectors c_i (knots and weights fixed), the new sensor locations s_k* depend linearly on c_i

local quadratic approximants at sensor points

 At each sensor point s_k, compute a nonnegative local quadratic approximant to the squared distance field of model shape

move closer to model shape

 Compute displacement vectors c_i of the control points such that sensors come closer to model shape by minimizing

$$F = \sum_{k=1}^{N} F_d^k (L_k(\mathbf{d}_1 + \mathbf{c}_1, \dots, \mathbf{d}_n + \mathbf{c}_n))$$

 This is a quadratic function in c_i

 For *regularization* and avoidance of overlappings/foldings of the final shape, an adequately weighted smoothing term F_s can be added to the functional, e.g. for surfaces:

$$F_s = \int \int (\mathbf{s}_{uu}^2 + 2\mathbf{s}_{uv}^2 + \mathbf{s}_{vv}^2) du dv$$

Amounts to minimization of quadratic function

- Displacement polygons of sensor points show that later moves are mainly in tangential direction
- Related to the computation of a good parameterization

Example: Offset approximation

Sensor points do NOT move towards offset along normals of the progenitor curve

- SDM employs curvature at closest point to compute 2nd order approximation of squared distance function
- TDM uses only squared distance to tangent at footpoint (requires regularization and stepsize control)
- PDM (mostly used) employs squared distances to footpoint
- TDM regularized with a PDM term works very well

SDM, TDM, PDM

- SDM: Newton algorithm with quadratic convergence
- TDM: Gauss-Newton iteration for nonlinear least squares problem; *quadratic convergence for zero residual problem* and good initial position; requires regularization (add multiple of identity matrix to approximate Hessian or add a PDM term with low weight) and step size control
- PDM: only linearly convergent and prone to be trapped in local minimizer

Example: NURBS surface approximation

Model surface (gold) and initial position of active NURBS surface (blue)

Final position of active NURBS surface

Approximation by a piecewise ruled surface

Application of ruled surface approximation

hot wire cutting (styrofoam)

wire EDM (metal)

Squared Distance Minimization II (W. Wang, D. Cheng, Y. Liu, H. P.)

 \wedge

- Error measurement orthogonal to the active curve/surface
- Squared distance field (quadratic approximants) attached to the moving curve/surface
- Quasi-Newton method (neglects rotation of tangent and change of curvature)

- TDM: measures the error via squared distance to tangent at closest point; requires regularization and step size control
- PDM (standard approach): measures error via squared distance to closest point
- TDM regularized with a PDM term (small weight) works very well

Example 1: Non-uniform data

Initial position

SDM after 8 iterations

Example 2: Thick point cloud

Initial position

SDM after 31 iterations

Comparison of PDM and SDM after 50 iteration steps

PDM after 20 iterations

SDM after 20 iterations

Convergence behavior

- Standard method (PDM): linear convergence
- SDM: quadratic convergence

