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Abstract: Two noncolinear, parallel axis
revolute joints each form an axle and bearing
for one of the two driven wheels which, to-
gether with two prismatically actuated legs,
support and propel a vehicle designed as a
platform for off-road timber harvesting, ex-
cavation and construction machinery. The
wheel-ground contacts are modeled as uni-
versal or U-joints. Such a closed chain model
reveals a mobile 6R mechanism wherein the
centres of the two axle R-joints, indeed the
entire line connecting these centres, describe
single degree of freedom motion and move
on an eighth order spherical curve with three
mutually orthogonal planes of symmetry.

Resumé: Deux articulations rotatives d’axe
a manivelle supportent les deux roues ac-
tionées d’un véhicule hors-piste amélioré par
I’ajout de deux jambes articulées et actionées
aux cylindres hydraulique. Ces véhicules
s’emploient dans le boisé, I’excavation et le
batiment. On modelise les contacts entre
roue et terre par des articulations Cardan.
Le systeme de roues-axe-terre comprend une
boucle mobile a 6R fermée; un mécanisme de
surcontraint et d’inédit. Imaginez les points
d’intersection entre chaque axe de roue et
le rayon vers le point de contact a terre.
On a trouvé que les points sur la ligne, au
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travers de ces points, se déplacent sur courbes
sphériques, de l'ordre de huit, posédant de
trois plans de symétrie orthogonale.

Introduction: Hiller and Schmitz [5],
Kecskeméthy [7], Hiller et al [6] and Six and
Kecskeméthy [8] treated the design, construc-
tion, kinematics, dynamics and control of
a wheeled-and-legged striding vehicle called
Robotrac; a sort of mechanized rickshaw.
However only the latter [8] alludes to an over-
constrained, single loop, six-revolute joint
single closed chain mechanism. This mecha-
nism presented itself as the authors analyzed
self-steering properties of the wheel pair when
the vehicle negotiates uneven terrain. Wheel
bearing axes are not colinear but, though par-
allel, offset so the two axles and an intersect-
ing perpendicular describe a simple, planar
crank. Wheels accommodate irregular ter-
rain by powered rotation of the crank so as
to change the distance ratio of the axles with
respect to the vehicle platform plane. Unless
the plane of the crank is vertical, so as to
maximize the ratio, one wheel contact point
is generally ahead of the other. Furthermore
a ground surface tangent plane is usually not
parallel to the wheel axle. An important re-
sult of the analysis [8] was to show that the
dihedral angle between the wheel and tangent



planes has little or no effect on turning sense
or tendency. Moreover self steering occurs in
a direction such that the trailing wheel, with
respect to direction of vehicle advance, is on
the smaller turning radius while the leading
one follows an arc of greater radius.

The Overconstrained Mechanism: It is
not the purpose here to pursue the non-
holonomic rolling characteristics of this two-
wheel set which was described by Six &
Kecskeméthy [8]. Rather, consider the type
of conceptual mechanism that is often used
to model such behaviour. Refering to the
upper drawing in Fig. 1 one sees the two
wheels with their ground contact points mod-
eled as universal or Cardan joints, U-joints,
where both axes are in the wheel plane, one
through the revolute, R-joint wheel bearing
centre, the other perpendicular to the first.
Notice the crank axle which is placed in a
reference position with the R-joint axes re-
spectively perpendicular to the first U-joint
axes mentioned above. Now the lower draw-
ing in Fig. 1 again shows all components in
reference or “home” position. The wheel is
represented by a spoke link line which con-
nects wheel bearing R-joint and ground con-
tact U-joint centres. The virtual U-joints are
expressed explicitly here. Note the placement
of the Cartesian reference frame and the three
design parameters a, b and ¢. The mobility of
this mechanism will be analyzed as the mo-
tion of the R-joint centre whose home posi-
tion is on the z-axis shown.

Analysis: Examine Fig. 1 again. This sys-
tem should not be mobile. It is a spatial four-
bar configuration consisting of the ground,
two wheel “spokes” and the crank axle. There
are two R-joints which each remove five de-
grees of freedom(dof) from the system while
the U-joints each constrains four dof. This
gives a total of

> C;=(2x5)+(2x4) =18

system constraints. Given S = 6, the num-
ber of dof in three dimensional space, and the
number of movable links

(N—1)=(4—-1)=3

Figure 1: Wheel & Crank Model

relation

the Chebychev-Grubler-Kutzbach
produces a theoretical mobility of

M=S8Sn-1)-> C;j=6(4-1)—-18=0

Mobility Hypothesis: Let us, for the mo-
ment, remove the crank axle and observe the



spherical motion of the two axle bearing R-
joint centres. They must move so that their
axes remain parallel. Parameterize the mo-
tion on an independent angle variable u which
has a positive vector along the z-axis. Thus
the left hand R-joint axis branch in the posi-
tive z-direction will turn, with positive u to-
wards the y-axis. For any value of angle u
the R-joint axis will turn by a dependent an-
gle v about the U-joint axis initially aligned
on the y-axis. A positive rotation through an-
gle v will cause the positive branch of the R-
joint axis to dip as the R-joint centre moves
along a meridian circle, polar on the z-axis
and whose postion is measured by longitude
u. The dependency of v upon wu is neces-
sary to maintain compatibility with the crank
since for any u # 0 the meridial planes are no
longer separated by distance b. Because of
this, the crank rotation angle w must be con-
sidered. This is defined, with respect to the
reference or “home” position as a positive ro-
tation vector in the z-direction so as to raise
the parallel R-joint axis passing though the
right hand R-joint.

Assembly, Symmetry, Compatibility,
Mobility: Clearly, one may assemble some
arbitrary combination of design parameters.
For purposes of detailed illustration length di-
mensions a = 24, b = 6, ¢ = 16 were used.
These are shown in Fig. 1. Although not im-
mediately obvious, it will be seen that spheri-
cal displacement characteristics depend solely
on the dimensionless ratio b/a. On the other
hand it 7s immediately obvious that when
u = tan~'(b/a) the two meridial planes coin-
cide. Both R-joint axes fall into this vertical
plane and v = u so that the distance between
the two spoke lines is maintained at a and
the R-joint axial separation is maintained at
b. This establishes another assembly mode;
not quite mobility but at least one can see
how the crank axle must assume a vertical
pose when the parallel meridial circle planes

coincide and thus have no distance separat-
ing them. This situation is illustrated in the
lowermost auxiliary view in Fig. 3. The abil-
ity to exhibit auxiliary elevations at arbitrary
angles u which maintain crank compatibility
is the key to establishing mobility and ana-
lyzing the nature of displacement.

Angular Relations: Four auxiliary eleva-
tion views are shown in Fig. 2.

vV=u

Figure 2: Movement of the Crank Axle

The first shows the reference position where
u = v = 0 and the fourth shows a maximum
value of v such that v = u = tan"1(b/a).
But in between we see situations where the



meridial planar separation, a horizontal dis-
tance measured in the top view as a projec-
tion on the plane z = 0,is b > p > 0. In the
auxiliary views one sees the distance ¢ which
is the component of R-joint axis separation
projected onto the auxiliary vertical meridial
plane with homogeneous coordinates

mo{0:cosu: —sinu: 0}

Obviously p?+¢? = b? and similarly the spoke
line separations measured in all five auxiliary
view remains fixed at a. This does not quite
consitute formal mathematical rigor concern-
ing proof of mobility but it is felt that the
argument is conclusive, nonetheless.

Simple Trigonometry: Deriving the an-
gular relations for cosv and cosw is quite
straight forward. We start by removing the
example from Fig. 2, where u = 5°, and en-
larging and labeling it as shown in Fig. 3.

a

= U:50

;) O/jp/:—(/bfa tan[u])cos[ u]
I //\ /

=a cos[u] +b sin[u]

\Jq:e\sin[v]

Figure 3: Distance & Angle Relations

The expressions for the distance p

p=(b—atanu)cosu

for the distance e which separates U-joints
projected on to meridial plane

e =acosu+ bsinu
and two for the distance ¢
g =esinv = 4/b% — p?

are easy to determine by examining Fig. 3
and are all that is needed. To get w is easier.
One notes

p (b—atanu)cosu
cosw = = =
b b
bcosu —asinu
- 2o (1)

Then from the two relations for ¢ we may
write
(acosu + bsinwu)?sin® v

=b* — (bcosu — asinu)?

Replacing sin?u with 1 — cos?u, expanding
and simplifying produces

a

cosv = (2)

acosu + bsinu

Both Eq. 2 and Eq. 1 may be nondimensional-
ized to functions of the ratio r = b/a. Notice
the spoke length ¢ appears nowhere.

(3)
(4)

secv = cosu + rsinu
sin u

COSW = COS U —
r

If relationships between v and w are desired
one may substitute

sinu =1 — cos*u
in Egs. 3 and 4
cosu +rv1 —cos?u —secv =0
V1 —cos?u

r

Ccosu — —cosw =0



and eliminate cos u to obtain Eq. 5, a fourth
order polynomial in cos w which can be solved
explicitly if required.

Vg cost w + U1 cos® w + Vo cos? w

(5)

+v3cosw + vy =0
where
vy = rt(r? + 1)?
= —4rt(r? + 1) secv = rysecw
= —2r2{[( -1 — 22 ]sec v
—r?[r?(r® +1)—1]—1}
=179 sec? v + 70
v3 = 4r?(r? — 1)[sec® v — (r? 4 1) sec ]
= r3sec® v + 7| secv
vy = (r? —1)?sectv
—{2[r? (r2(r2 -1) - 1) + 1] — r°}sec’v
+H(rt = 1)2 = r(r® = 1))

= rysect v + T sec? v + 0

Alternately, Eq. 5 can be rearranged in order
to be solved for v.

Ty sect v + T3 COS W sec® v

+(ry cos® w + 1) sec® v
+(ry cos® w + 7 cos w) secv
+(vg cos®> w + 1o +14) =0

(6)
Notice that the reciprocal secv can be re-

placed with cosv by multiplying Egs. 5 and
6 by cosv.

Implicit Form and Results: Although the
distance ¢ does not appear in the solution,
Eq. 3, one must assume some radius for the
spoke sphere centred on an R-joint in order
to obtain the implicit equation of the spoke
cone, i.e., the surface swept out by a spoke
line. First we note the polar -vs- Cartesian
relationships.
x

T = CCcoSuSinv = CoOSU = —
csin v

Y

csinv

z
Z=CCOSVU = COSU = —
c

y =csinusinv = sinu =

These can be substituted into Eq. 3 to pro-
duce

by
acsinv

C T

Z  csinv
This expands to

(z + by/a)?2* + & (2* — ¢?)
which together with the sphere

P4yt +22 - =0 (7)
gives the fourth order surface, a cone with its
apex on the origin.
b

(w4 =)zl = (@ +y"+2") (5" +2°) = 0 (8)
The eighth order curve of the R-joint trajec-
tory is obtained with all simultaneous solu-
tions of Eq. 7 and Eq. 8. Finally we see in
Fig. 4 a projection of such curves on z = 0

for b/a = 6/24,12/24,24/24, 48 /24.

Figure 4: Spherical Self-Motion Curves



These were produced not from the implicit
relations but from Eq. 2, varying u by one de-
gree increments and computing v, then plot-
ting x and y from the first two polar to Carte-
sian relationships above.

Planes of Symmetry: The planes of sym-
metry of the figure eight-like intersections of
the cone and sphere are easy to see. These
are:-

e The equatorial plane z = 0 which sepa-

rates the cone into halves on the apex,
e The meridial planes m{0 : —b : a : 0}
and

e The meridial planes perpendicular to m,
n{0:a:b:0}.

Conclusion: The self motion of this mech-
anism, apart from revealing an apparently
novel 6R closed chain, should contribute
something to the understanding of Robotrac
steering behaviour, i.e., what sort of track-
ing radius may be expected, given a steering
input angle w to a mechanism with a design
specified by a, b, c.

Of possible interest to the community of
geometricians, it is satisfying to note that,
notwithstanding the eighth order R-joint tra-
jectory curve, really two diametrically oppo-
site fourth order curves on the sphere sur-
face, and the fourth order cone swept by the
spoke line, given the mechanism’s design pa-
rameters a, b, c and a specific value of angle
u, the angles v and w can be obtained con-
structively. So the computation can be re-
duced to quadratic equation solving. This
was illustrated in Fig. 3. A mechanism with
a =24, b = 6 and ¢ = 16 was shown with
an arbitrary selection of v = 5°. The dis-
tance p can be measured immediately in the
top view as the distance between the meridial
circle planes at longitude uE, assuming the
plan is viewed from the north pole. Then ¢

can be found with a right angle triangular
construction where p is one side and b is the
hypotenuse. Finally the angle v is available in
the auxiliary elevation of the meridial circle
planes. It is only necessary to construct the
common tangent between one of the meridial
circles and another of radius ¢ — ¢ concentric
with the second meridial circle. The tangent
dips v from the horizontal.

It is noted with satisfaction that Diet-
maier’s extensive lexicon [3] of mobile over-
constrained single loop spatial 6R mecha-
nisms does not include this one. Not too
surprising because, unlike the unique Ben-
net four jointed loop [1] and the relatively
rare five jointed “Goldberg Variations” [4]
(apologies to the late Glen Gould), six jointed
loop species are common and continue to
defy complete classification. Nevertheless
the Denavit-Hartenberg parameters [2] of this
one are cited below, for the record. We go
around the loop starting with the vertical axis
R-joint that defines the meridial angle u of
the grounded U-joint on the left.

&1—% a1:0 81:0
=75 ay=c S =20
a3 =0 a3="> S3=a
Qy=735 a4==c s4 =0
Oé5_g s = 85:0
046:0 a6:\/a2+62 86:0
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