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After discussing the Study point transformation operator, a
unified way to formulate kinematic problems, using “points
moving on planes or spheres” constraint equations, is in-
troduced. Application to the direct kinematics problem so-
lution of a number of different parallel Schönflies motion
robots is then developed. Certain not widely used but use-
ful tools of algebraic geometry are explained and applied for
this purpose. These constraints and tools are also applied
to some special parallel robots called ”double triangular”
to show that the approach is flexible and universally perti-
nent to manipulator kinematics in reducing the complexity
of some previously achieved solutions. Finally a novel two
legged Schönflies architecture is revealed to emphasize that
good design is not only essential to good performance but
also to easily solved kinematic models. In this example ar-
chitecture, with double basally actuated legs so as to mini-
mize moving mass, the univariate polynomial solution turns
out to be simplest, i.e, of degree two.
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1 Introduction
This article was originally intended only to revisit, with re-
formulation using Study parameters, the direct kinematic
analysis (DK) of two special parallel mechanisms, so-called
double triangular manipulators (DTM). These parameters,
eight homogeneous coordinates of kinematic image space,
are also called the elements of a dual quaternion. Double
triangular mechanisms include a planar, a spherical and a
full six degree of freedom (dof) spatial type, all introduced
by Daniali [5, 6]. This re-investigation of limited scope pro-
duced simplifications in solution and some insight that em-
boldened the authors to go farther afield and include a num-

ber of unrelated but possibly more practical parallel manip-
ulators under the unifying umbrella of these analytical tools.
The extended work reported herein concentrates on so-called
Schönflies four dof manipulators, characterized by four dis-
tinctly different architectures and investigated by Nabat et
al [11], Angeles et al [1], Gauthier [7] and Zsombor-Murray
[15], respectively, that admit all three translational degrees
and one rotation about a fixed axis. A treatment of spherical
DTM DK analysis is included. Note that if one is given a
four dof manipulator, like ones confined to Schönflies mo-
tions, then the DK is completely specified with four con-
straint equations. Furthermore, in this paper these equations
describe points, transformed via kinematic mapping, to lie
on planes or spheres. The main purpose is to investigate var-
ious parallel manipulator architectures and show how their
DK is modeled with different combinations of constraints of
this type. In every case the main result is a univariate poly-
nomial of degree two, four or eight and a linear back substi-
tution process to unambiguously evaluate all other unknown
parameters. The relation between combinations and the de-
gree of the univariate polynomial solution is explained.

The general Euclidean displacement β in 3-space can be
described by

q = Mp (1)

Here M is the 4×4 matrix

M =


x2

0 + x2
1 + x2

2 + x2
3 0

2(x0y1− x1y0 + x2y3− x3y2) x2
0 + x2

1− x2
2− x2

3
2(x0y2− x2y0 + x3y1− x1y3) 2(x1x2 + x0x3)
2(x0y3− x3y0 + x1y2− x2y1) 2(x1x3− x0x2)



0 0
2(x1x2− x0x3) 2(x1x3 + x0x2)

x2
0− x2

1 + x2
2− x2

3 2(x2x3− x0x1)
2(x2x3 + x0x1) x2

0− x2
1− x2

2 + x2
3

 (2)

and s = [x0,x1,x2,x3,y0,y1,y2,y3]
> is the Study-parameter

vector whose elements have to fulfill the Study condition

x0y0 + x1y1 + x2y2 + x3y3 = 0, (3)

and the non-zero condition

x2
0 + x2

1 + x2
2 + x2

3 6= 0. (4)

t1 = 2(x0y1− x1y0 + x2y3− x3y2),
t2 = 2(x0y2− x2y0 + x3y1− x1y3),
t3 = 2(x0y3− x3y0 + x1y2− x2y1)

 (5)

are the translation components in x−,y− and z−direction
and

p =


p0
p1
p2
p3

 , q =


q0
q1
q2
q3


are the homogeneous coordinate vectors of a point P and its
image Q under β.

The rest of the paper is organized as follows: Section
2 contains the general formulation of planar and spherical
constraints in terms of Study parameters. In the three sec-
tions 3, 4, 5 we demonstrate the applicability of the method
by treating some manipulator classes pertaining to the types
mentioned above.

2 Planar and Spherical Constraints
In general, a kinematic mapping approach to any problem
involves the selection of a set of point, plane and/or line el-
ements, all on a chosen subassembly, called EE because it
often pertains to and is short for “end effector”, of the mech-
anism in question, and displacing these according to some
parameters, xi,yi, to be determined so that the selected ele-
ments fall on appropriate constraint surfaces on the remain-
ing portion of the mechanism, called FF to indicate base or
“fixed frame”. In what follows only point elements and pla-
nar or spherical constraint surfaces will be used. Notwith-
standing these restrictions it will be seen that a rich variety
of mechanical situations can be dealt with.

2.1 Planar Constraints
Given the transformation relation, Eq. 1, consider a planar
surface constraint equation. This can be written as

e>q = e>M p = e0q0 + e1q1 + e2q2 + e3q3 = 0 (6)

with

e =


e0
e1
e2
e3


denoting the homogeneous coordinate vector of the con-
straint plane ε in the fixed frame and

p =


1
p1
p2
p3


that of the point P in the moving frame whose image Q has
to lie in ε.

Only normalized homogeneous point coordinates
(p0 = 1) are used throughout to maintain points in Euclidean
space. Then p1, p2, p3, are the Cartesian coordinates of P in
the moving, end effector frame EE.

Eq. 6 is a homogeneous quadratic constraint equation in
terms of Study parameters x0,x1,x2,x3,y0,y1,y2,y3. It can be
compactly written as follows:

s> C s = 0 (7)

Here C is an 8×8 matrix of the form

C =

A B

B> O

 (8)

with 4×4 blocks A, O and B where O is a zero block while A
is symmetric and B is skew-symmetric. They can be written
as follows:

A =


e0 + e1 p1 + e2 p2 + e3 p3 e3 p2− e2 p3

e3 p2− e2 p3 e0 + e1 p1− e2 p2− e3 p3
e1 p3− e3 p1 e2 p1 + e1 p2
e2 p1− e1 p2 e1 p3 + e3 p1

e1 p3− e3 p1 e2 p1− e1 p2
e2 p1 + e1 p2 e1 p3 + e3 p1

e0− e1 p1 + e2 p2− e3 p3 e3 p2 + e2 p3
e3 p2 + e2 p3 e0− e1 p1− e2 p2 + e3 p3

(9)

B =


0 e1 e2 e3
−e1 0 e3 −e2
−e2 −e3 0 e1
−e3 e2 −e1 0

 (10)



2.2 Spherical Constraints
A spherical constraint on the position of an image point
Q(q0,q1,q2,q3) is a condition of the form

q2
1 +q2

2 +q2
3 + e1q0q1 + e2q0q2 + e3q0q3 + e0q2

0 = 0 (11)

where ei =−2mi, i = 1,2,3 and e0 = m2
1+m2

2+m2
3−r2 with

mi being the centre coordinates of the sphere κ under consid-
eration and r denoting its radius.

Notice that symbols ei, i = 0,1,2,3 are used to denote
both plane and sphere parameters to emphasize that these
play the same rôle in formulating the constraint equation de-
veloped in either case.

Since condition (11) is quadratic in qi and qi themselves
are quadratic in the Study parameters, an a-priori quartic
constraint on qi is obtained. However by applying a method
due to [8]1 this is thus reduced to a quadratic equation: Four
times the square of the Study condition (3) is added to the im-
plicit equation (11) to obtain a polynomial that is the product
of

x2
0 + x2

1 + x2
2 + x2

3

and a homogeneous quadratic factor f in the eight Study pa-
rameters:

q2
1 +q2

2 +q2
3 + e1q0q1 + e2q0q2 + e3q0q3 + e0q2

0

+4(x0y0 + x1y1 + x2y2 + x3y3)
2 = (x2

0 + x2
1 + x2

2 + x2
3) · f (s>)

Since x2
0+x2

1+x2
2+x2

3 6= 0 and x0y0+x1y1+x2y2+x3y3 = 0
the constraint equation imposed by a sphere constraint is:

f (s>) = 0

Compressing coefficients, a compact matrix form is obtained
as:

f (s>) = s> C∗ s = 0

The resulting 8×8 matrix C∗ is abbreviated to block form as

C∗ =

A+(p2
1 + p2

2 + p2
3)I B∗

B∗> 4 I

 (12)

where A is the 4×4 symmetric matrix (Eq. 9), B∗ is the 4×4
skew symmetric matrix

B∗ =


0 e1 +2p1 e2 +2p2 e3 +2p3

−e1−2p1 0 e3−2p3 −e2 +2p2
−e2−2p2 −e3 +2p3 0 e1−2p1
−e3−2p3 e2−2p2 −e1 +2p1 0


(13)

1M. Husty [8] was first to apply this technique to formulate the DK algo-
rithm for the general Stuart-Gough platform manipulator where six points
in EE are displaced onto six spheres in FF.

and I is the 4×4 identity matrix.

2.3 Constraint Equation Structure
a) Comparing Eqs. 8, 9, 10 and 12, 13 one sees that matrices

C and C∗, that contain only given parameters, are quite
similar in structure.

b) In the case of the point-on-plane (PoP) constraint the ma-
trix C leads to an equation that is linear in yi.

c) The point-on-sphere (PoS) constraint contains a term
4∑

3
i=0 y2

i but there are no other quadratic terms in yi.
d) In the case of more than one sphere constraint, only one

constraint equation needs to remain quadratic in yi be-
cause it can be subtracted from the others to remove all
y2

i .
e) For a full six dof manipulator problem, six constraint

equations are required. The non-zero condition and the
Study condition

3

∑
i=0

x2
i 6= 0,

3

∑
i=0

xiyi = 0

are added as additional constraints to handle eight un-
known parameters.

3 Schönflies Manipulator DK with Plane and/or Sphere
Constraints

The four parameter subgroup of Schönflies displacements
contains the proper Euclidean transformations that confine
rotation to a fixed axial direction. Here the common direction
is taken parallel to the z- or x3-axis of EE and FF. Analytic
description of this group is obtained by substituting

x1 = x2 = 0

in the general displacement matrix, Eq. 2, so as to become
the 4×4 matrix, Eq. 14.

M =


x2

0 + x2
3 0 0 0

2(x0y1− x3y2) x2
0− x2

3 −2x0x3 0
2(x0y2 + x3y1) 2x0x3 x2

0− x2
3 0

2(x0y3− x3y0) 0 0 x2
0 + x2

3

 (14)

Simplified first column (translation) elements are shown
above on the right and are defined below.

t1 = 2(x0y1− x3y2),
t2 = 2(x0y2 + x3y1),
t3 = 2(x0y3− x3y0).

 (15)

The Study condition and the non-zero condition are similarly
reduced

x0y0 + x3y3 = 0, (16)
x2

0 + x2
3 6= 0. (17)



A Schönflies manipulator is any mechanism that admits
only Schönflies motions.

In case of Schönflies displacement, a plane constraint is
represented by matrix C, (Eq. 8), with second and third rows
and columns removed, that now reads as

a1x2
0 +2a2x0x3 +a3x2

3 +2e1(x0y1− x3y2) +

2e2(x0y2 + x3y1)+2e3(x0y3− x3y0) = 0

or, using ti, defined by Eq. 15, as

a1x2
0 +2a2x0x3 +a3x2

3 + e1t1 + e2t2 + e3t3 = 0, (18)

where

a1 = e0 + e1 p1 + e2 p2 + e3 p3,

a2 = e2 p1− e1 p2,

a3 = e0− e1 p1− e2 p2 + e3 p3.

Similarly a simplified2 sphere constraint, in case of the
Schönflies motion, is written:

a∗1x2
0 +2a∗2x0x3 +a∗3x2

3 +

2b∗1x0y1 +2b∗2x3y2 +2b∗3x0y2 +2b∗4x3y1 +

2b∗5(x0y3− x3y0)+4(y2
0 + y2

1 + y2
2 + y2

3) = 0 (19)

where

a∗1 = e0 + e1 p1 + e2 p2 + e3 p3 + p2
1 + p2

2 + p2
3,

a∗2 = e2 p1− e1 p2,

a∗3 = e0− e1 p1− e2 p2 + e3 p3 + p2
1 + p2

2 + p2
3,

b∗1 = e1 +2p1,

b∗2 = −e1 +2p1,

b∗3 = e2 +2p2,

b∗4 = e2−2p2,

b∗5 = e3 +2p3.

3.1 Schönflies Motion with Three PoP Constraints
To better understand geometric techniques used later in spe-
cific examples of parallel manipulator architectures it is use-
ful to discuss Darboux motion which is defined by the re-
quirement that the path of each point is a planar curve. It
turns out (cf. [3, pp. 304–310]), that aside from trivially ob-
vious cases where all point paths lie in parallel planes, such a
motion is one-parametric and the rigid body can rotate only
about axes in some common, fixed direction. This means that
Darboux motion is a subgroup of Schönflies motion. More-
over, it is well known that all point paths under a non-trivial
Darboux motion are ellipses.

2Only six of the bilinear terms xiy j occur.

In the following we prove that a Schönflies motion with
three PoP constraints is always a Darboux motion.3 All we
need to show is that, given three PoP constraints, the transla-
tional components t1, t2, t3 are homogeneous quadratic func-
tions in x0 or x3, i.e., the resulting motion is rational of order
two.
Let

ai1x2
0 +2ai2x0x3 +ai3x2

3 +2ei1(x0y1− x3y2) +

2ei2(x0y2 + x3y1)+2ei3(x0y3− x3y0) = 0 (20)

be the three PoP constraints, i = 1,2,3 (compare with
Eq. 18). With some further symbolic compression, as noted
afterward, the following four expressions, Eq. 21, generated
with Eq. 20 via Cramer’s rule, are offered, by way of proof,
to show that one indeed obtains a Darboux motion.

y0 = −x3 ·
γ2(x0,x3)

2∆ · (x2
0 + x2

3)
,

y1 =
x0 ·α2(x0,x3)+ x3 ·β2(x0,x3)

2∆ · (x2
0 + x2

3)
,

y2 =
x0 ·β2(x0,x3)− x3 ·α2(x0,x3)

2∆ · (x2
0 + x2

3)
,

y3 = x0 ·
γ2(x0,x3)

2∆ · (x2
0 + x2

3)



(21)

where α2(x0,x3),β2(x0,x3),γ2(x0,x3) are the quadratic ho-
mogeneous polynomials

α2(x0,x3) = [|a1 e2 e3| |a2 e2 e3| |a3 e2 e3|] [x2
0 2x0x3 x2

3]
>

β2(x0,x3) = [|e1 a1 e3| |e1 a2 e3| |e1 a3 e3|] [x2
0 2x0x3 x2

3]
>

γ2(x0,x3) = [|e1 e2 a1| |e1 e2 a2| |e1 e2 a3|] [x2
0 2x0x3 x2

3]
>

and

∆ = |e1 e2 e3|, a j =

a1 j
a2 j
a3 j

 , e j =

 e1 j
e2 j
e3 j


By substitution of Eq. 21 into Eqs. 15 we get

t1 = 2(x0y1− x3y2) =
α2(x0,x3)

∆
,

t2 = 2(x0y2 + x3y1) =
β2(x0,x3)

∆
,

t3 = 2(x0y3− x3y0) =
γ2(x0,x3)

∆
.

 (22)

This shows that the translational components t1, t2, t3 are in-
deed homogeneous quadratic functions in x0,x3 as stated.

3Vogler [13] recently gave an alternative proof of this fact.



3.2 DK of Schönflies Manipulators with Three PoP and
a Fourth PoP or PoS Constraint

As shown in the previous section the three given PoP con-
straints determine a Darboux motion. Hence, the path of the
fourth given point undergoing this motion is an ellipse. On
the other hand this point must lie on a plane or sphere ac-
cording to the fourth given constraint. In conclusion the DK
problem at hand can be reduced to finding the intersection of
an ellipse with a plane or a sphere. Insight gained from this
approach shows that such a problem must necessarily admit
two or four DK solutions, at most.

Analytically, the solutions can be found as follows.
From the three given PoP constraints we obtain the expres-
sions Eq. 21 and Eq. 22.

a) If the fourth constraint surface is a plane represented by
Eq. 18 then substitution of Eq. 22 produces a quadratic
univariate in x3 after dehomogenizing with x0 = 1.

b) If the fourth surface is a sphere represented by Eq. 19,
then by substitution of Eq. 21 the quadratic term
4∑

3
i=0 y2

i becomes

4(y2
0 + y2

1 + y2
2 + y2

3) =

1
∆2(x2

0 + x2
3)

[
α

2
2(x0,x3)+β

2
2(x0,x3)+ γ

2
2(x0,x3)

]
Thus, substitution of Eq. 21 in Eq. 19 clearly produces
a quartic univariate in x3 after multiplication with the
denominator x2

0 + x2
3 and dehomogenizing with x0 = 1.

Once the values of x3 are thus obtained, the three equations in
Eq. 22 allow one to find the corresponding values of t1, t2, t3
thus completing the definition of the DK displacement im-
plied by the problem.

3.3 DK of Schönflies Manipulators with Two or More
PoS Constraints

Let at least two PoS constraints (Eq. 19) be used to charac-
terize the DK of a Schönflies motion. Then the difference
between any two PoS equations removes the term 4∑

3
i=0 y2

i
so as to always yield three equations (Eq. 23) linear in
y0,y1,y2,y3.

mi1x2
0 +mi2x0x3 +mi3x2

3−mi4x3y0 +

(mi5x0 +mi6x3)y1 +(mi7x0 +mi8x3)y2 +mi4x0y3 = 0
(23)

Each represents either a PoP constraint or the difference
between two PoS constraints. The coefficients mi j, i =
1,2,3, j = 1, . . . , 8 are formulated from appropriate com-
binations of given point, plane or sphere parameters, pkl , ekl .
A fourth constraint contains the term 4∑

3
i=0 y2

i . It has the
form of Eq. 19.

A 4×5 matrix, whose rows are coefficients of 1, y0, y1,
y2 and y3, as these appear in the Study condition Eq. 16 and
the three Eqs. 23, is set up. Taking determinants of all 4×4

minors with alternating ± sign and dividing all the rest by
the first, i.e., Cramer’s rule, yields yi = yi(x0,x3).

∆ = (x2
0 + x2

3)[µ457x2
0 +(µ458 +µ467)x0x3

+µ468x2
3]

= (x2
0 + x2

3)δ2(x0,x3)

y0 =
x3

∆
[µ157x4

0 +(µ158 +µ167µ257)x3
0x3

+(µ168 +µ258 +µ267 +µ357)x2
0x2

3

+(µ268 +µ358 +µ367)x0x3
3 +µ368x4

3]

=
x3

∆
α4(x0,x3)

y1 =
x2

0 + x2
3

∆
[µ147x3

0 +(µ148 +µ247)x2
0x3

+(µ248 +µ347)x0x2
3 +µ348x3

3]

=
x2

0 + x2
3

∆
·β3(x0,x3)

y2 = −
x2

0 + x2
3

∆
[µ145x3

0 +(µ146 +µ245)x2
0x3

+(µ246 +µ345)x0x2
3 +µ346x3

3]

= −
x2

0 + x2
3

∆
γ3(x0,x3)

y3 = −x0

x3
y0

= −x0

∆
·α4(x0,x3)



(24)

where µi jk := |mi m j mk|, m j = [m1 j,m2 j,m3 j]
>.

Note that homogeneous polynomials δ2(x0,x3),
α4(x0,x3), β3(x0,x3) and γ3(x0,x3) in x0,x3 are of degree
2,4,3 and 3, respectively.

At this point, things do not look encouraging. The
numerators in the expressions for yi are of fifth order and
the common denominator ∆ is quartic. Improvement in
prospects appear after substitution of these expressions into
the quadratic term ∑

3
i=0 y2

i of the fourth constraint Eq. 19:

3

∑
i=0

y2
i =

α2
4(x0,x3)+(x2

0 + x2
3) ·
(
β2

3(x0,x3)+ γ2
3(x0,x3)

)
(x2

0 + x2
3) ·δ2

2(x0,x3)



Hence, substitution of Eqs. 24 into the fourth equation
yields, after multiplication with the denominator
(x2

0 + x2
3)δ

2
2(x0,x3), the following homogeneous octic equa-

tion in x0,x3:

(x2
0 + x2

3)
[
δ2(x0,x3)

(
(a∗1x2

0 +2a∗2x0x3 +a∗3x2
3)δ2(x0,x3)

+2(b∗1x0 +b∗4x3) ·β3(x0,x3)−2(b∗3x0 +b∗2x3)γ3(x0,x3)
− 2b∗5α4(x0,x3)

)
+4
(
β2

3(x0,x3)+ γ2
3(x0,x3)

)]
+4α2

4(x0,x3)
= 0

(25)
This establishes the upper bound of eight on the number

of possible solutions for any Schönflies DK problem that is
defined by PoP and PoS constraints and contains at least two
of the latter. With solutions for x3, and having set x0 = 1, cor-
responding values of yi are obtained explicitly with Eqs. 24.
So are elements of the transformation, Eq. 14. This essen-
tially solves this DK problem. In the following section it will
be shown that eight real DK solutions for such Schönflies ar-
chitectures can occur.

3.4 Examples of Schönflies Manipulators
3.4.1 Fully Parallel Schönflies Manipulators

free R-joint

R-joint actuator
-joint actuator

FF FF

EE

3 free   -joints

free R-joints
toroid surface
of R   -dyad

(a) 4- or 2-Legged Schönflies Manipulator with RΠΠR and ΠRΠR Legs

(b) 4-Legged PRΠR Schönflies Robot

Fig. 1. Various Leg Architectures in a Variety of Schönflies Parallel
Manipulator Contexts

Figs. 1 show the Π or parallelogram joint, a feature common
to many Schönflies manipulators because it provides a one
dof circular translation to the distal link, with respect to the

link at the opposite side of the parallelogram. Fig. 1(a) shows
two leg designs, with Π- and R-joints, that may be used to
build 4-legged robots wherein EE executes Schönflies mo-
tion. Actuating a basal R-joint as shown on the left causes
the remaining free joints to bind the EE attachment point,
shown at the centre of the terminal R-joint, to motion in the
plane of the two Π-joints. Actuating a basal Π-joint as shown
at the right causes that point to move, alas, on a torus. A
four, similar legged manipulator of the first type is there-
fore seen to have four PoP constraints and a DK solution
admitting two assembly modes as demonstrated in section
3.2. In the case on the right, circular sections of the torus
are shown. DK analysis of such models awaits a future treat-
ment of toroidal constraint that promises to be more compli-
cated. A glance at Zhou’s manipulator [14], with PRΠR legs,
shown in Fig. 1(b), fares –if one seeks solution simplicity–
somewhat better. The EE attachment points cause the termi-
nal R-joint centres to move on spheres and the DK problem
solution admits an octic univariate polynomial.

3.4.2 Two Legged Schönflies Manipulators

Shown in Fig. 2, a) is a novel design prototype revealed
by Angeles et al [1]. The idea was to achieve superior
workspace and dexterity, that one might expect when the
number of legs of a parallel robot are reduced from four to
two, while retaining some advantages inherent in parallel ar-
chitecture. Furthermore maintaining basal actuation is seen
as an additional advantage of the design, This avoids place-
ment of motors on moving links, as is done in many serial
designs. Two joint actuation is achieved by means of an –
also basally mounted– planetary gearbox that delivers torque
to both the proximal R- and Π-joints. Only one would be
actuated, in typical four legged designs, like those depicted
in Fig. 1.

The DK of Angeles’ two legged Schönflies manipula-
tor [1] is immediately seen to be modeled as the placement
of each of the two EE attachment points Pi on a circle ki rep-
resented by two surfaces, a sphere κi and a vertical plane
εi, i = 1,2. The solution paradigm is typical of all parallel
Schönflies manipulators with PoP and more than one PoS
constraint. Therefore the setup for the octic univariate, de-
rived in section 3.3, will be carried out here in some detail.

By appropriate choice of the coordinate system in EE
one can assume that the two EE attachment points P1, P2 are
given by the vectors

p1 =


1
0
0
0

 , p2 =


1
d
0
0



which means that P1 is on the origin and P2 on the x-axis of
the EE coordinate system. The circles k1, k2 are represented



(a) Planetary Gearbox Drive
for Double Basal Actuation
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k1 k2

(b) Example with Eight Real DK Solutions

Fig. 2. Two Legged Schönflies Manipulator

by the plane-sphere pairs (ε1,κ1) and (ε2,κ2):

ε1 . . .e1 =


e10
e11
e12
0

 , κ1 . . .e2 =


e20
e21
e22
e23

 ,

ε2 . . .e3 =


e30
e31
e32
0

 , κ2 . . .e4 =


e40
e41
e42
e43


From the constraints P1 ∈ ε1,κ1 and P2 ∈ ε2,κ2 we get the
four equations

e10(x2
0 + x2

3)+2e11(x0y1− x3y2) +

2e12(x0y2 +2x3y1) = 0, (26)

e20(x2
0 + x2

3)+2e21(x0y1− x3y2) +

2e22(x0y2 + x3y1)+2e23(x0y3− x3y0) +

4(y2
0 + y2

1 + y2
2 + y2

3) = 0, (27)

(e30 + e31d)x2
0 +2e32dx0x3 +(e30− e31d)x2

3 +

2e31(x0y1− x3y2)+2e32(x0y2 + x3y1) = 0, (28)

(e40 + e41d +d2)x2
0 +2e42dx0x3 +

(e40− e41d +d2)x2
3 +2(e41 +2d)x0y1 −

2(e41−2d)x3y2 +2e42(x0y2 + x3y1) +

2e43(x0y3− x3y0)+4(y2
0 + y2

1 + y2
2 + y2

3) = 0. (29)

To obtain Eq. 23, the system of three equations linear in yi,
Eqs. 26, 28 are selected along with the difference between
Eqs. 29 and 27. The resulting coefficients mi j are

m11 = m13 = e10, m12 = m14 = 0,
m15 =−m18 = 2e11, m16 = m17 = 2e12,

m21 = e30 + e31d, m22 = 2e32d, m23 = e30− e31d,

m24 = 0, m25 =−m28 = 2e31, m26 = m27 = 2e32,

m31 = e40− e20 + e41d +d2, m32 = 2e42d,

m33 = e40− e20− e41d +d2, m34 = 2(e43− e23),

m35 = 2(e41− e21 +2d), m36 = m37 = 2(e42− e22),

m38 = 2(−e41 + e21 +2d).

With the coefficients mi j one defines the determinants µi jk
and hence the polynomials α4(x0,x3), β3(x0,x3), γ3(x0,x3),
δ2(x0,x3) according to Eq. 24. Finally, one of the two given
PoS constraints, say Eq. 27, is used to produce the univariate
octic Eq. 25. In this case the resulting constants a∗1, . . . ,b

∗
5

are:

a∗1 = a∗3 = e20, a∗2 = 0,
b∗1 =−b∗2 = e21, b∗3 = b∗4 = e22, b∗5 = e23

Figure 2 b) shows an example with eight real solutions.
The eight poses of EE are represented by eight horizontal –
they do not appear so in the perspective image– bars whose
endpoints P1, P2 lie on the two given circles k1, k2 represent-
ing EE anchor point free motion in FF. This example was
solved using the data below:

d = 5, e1 =


0
1
0
0

 , e2 =


−9
0
0
0

 ,

e3 =


−0.98
−0.1

1
0

 , e4 =


−23.87
−0.4
−2
−0.6


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Fig. 3. Two Screw Actuators for Double Basal Actuation

As a final example of two legged Schönflies manipula-
tors, the two view drawing in Fig. 3, shows for the first time
how, after considerable further development of the basic de-
sign idea, to apply a very simple PPPR leg architecture to
achieve a DK model where two points S and T move on two
lines S and T , respectively. Each line is the intersection of
a vertical plane and one normal to it. The two basal P-joints
on each leg are actuated, possibly in the manner shown. With
only PoP constraints, the DK admits two solutions, at most.

4 DK of the Spherical Double Triangular Manipulator
Fig. 4, a) shows the mechanical layout of a regular spheri-
cal double triangular manipulator (spherical DTM). Keep in
mind that the three short legs, each made up of curved sliders
and intermediate R-joints, separating the curved rods of FF
and EE, make this architecture kinematically equivalent to
a classical three-legged RRR spherical parallel manipulator.
Notwithstanding apparent similarity to the spatial DTM (see
section 5) this one, in contrast, is fully parallel, i.e., has one
as opposed to more actuated joints per leg.

Under spherical displacement there are no terms con-
taining yi in the point transformation Eq. 2:

(a) Equilateral Spherical DTM

(b) Example with Eight Real DK Solutions

Fig. 4. Spherical Double Triangular Manipulator

M =

 x2
0 + x2

1 + x2
2 + x2

3 0
0 x2

0 + x2
1− x2

2− x2
3

0 2(x1x2 + x0x3)

0 0
2(x1x2− x0x3) 2(x1x3 + x0x2)

x2
0− x2

1 + x2
2− x2

3 2(x2x3− x0x1)
2(x2x3 + x0x1) x2

0− x2
1− x2

2 + x2
3

 (30)

The DK of the spherical DTM can be reformulated as
the following task:

Given a spherical triangle P1P2P3 on the unit sphere and
three planes ε1,ε2,ε3 on the origin (centre of the unit sphere)
find a congruent spherical triangle Q1Q2Q3 with Qi ∈ εi.

In other words one has to find all spherical displace-
ments that satisfy the three PoP conditions Pi,εi, i = 1,2,3.

To solve this task one may simplify coefficients by
choosing, without loss in generality, the three points Pi and
the three planes εi, as follows.



p1 =


1
1
0
0

 , p2 =


1

p2,1
p2,2
0

 , p3 =


1

p3,1
p3,2
p3,3


and

e1 =


0
1
0
0

 , e2 =


0

e2,1
e2,2
0

 , e3 =


0

e3,1
e3,2
e3,3


Then the three planar constraints

e>i M pi = 0, i = 1,2,3

have the form

x2
0 + x2

1− x2
2− x2

3 = 0

a00x2
0 +a11x2

1 +a22x2
2 +a33x2

3 +
2a03x0x3 +2a12x1x2 = 0

b00x2
0 +b11x2

1 +b22x2
2 +b33x2

3 +
2b01x0x1 +2b02x0x2 +2b03x0x3 +
2b12x1x2 +2b13x1x3 +2b23x2x3 = 0


(31)

where M is the matrix Eq. 30 and

a00 = e21 p21 + e22 p22, a11 = e21 p21− e22 p22,

a22 =−e21 p21 + e22 p22, a33 =−e21 p21− e22 p22

a03 = e22 p21− e21 p22, a21 = e21 p22 + e22 p21

b00 = e32 p32 + e31 p31 + e33 p33,

b11 =−e33 p33 + e31 p31− e32 p32,

b22 = e32 p32− e31 p31− e33 p33,

b33 =−e31 p31− e32 p32 + e33 p33,

b01 = e33 p32− e32 p33, b02 = e31 p33− e33 p31,

b03 = e32 p31− e31 p32, b12 = e31 p32 + e32 p31,

b13 = e31 p33 + e33 p31, b23 = e32 p33 + e33 p32.

Remark: It is well known that each of the Eqs. 31 represents
a Clifford-quadric in a homogeneous three dimensional vec-
tor space of Euler parameters x0,x1,x2,x3. This is a Cayley-
Klein space with an elliptic metric based on the absolute
null-quadric M : x2

0 + x2
1 + x2

2 + x2
3 = 0. A Clifford-quadric

is characterized by the property that its intersection with M
is a skew quadrilateral consisting of two pairs of conjugate
complex straight lines. See, for instance, [10].

In the following we will outline how the number of vari-
ables can be reduced from four –three, if dehomogenization

is counted– to two by introducing a bilinear parametrization
of the Clifford quadric represented by the first of the three
Eqs. 31, i.e.,

x2
0 + x2

1− x2
2− x2

3 = 0. (32)

By means of the regular projective (coordinate) transforma-
tion

x0 = y0 + y3
x1 = y1 + y2
x2 = y0− y3
x3 = y1− y2

 (33)

the Clifford quadric, Eq. 32, becomes the bilinear equation

4(y0y3 + y1y2) = 0.

Now a parametrization can be easily tailored so as to null the
expression above, viz.:


y0
y1
y2
y3

 =


−1
u
v

uv

 (34)

After application of the inverse projective transform (Eq. 33)
we obtain the mentioned bilinear parametrization of the orig-
inal Clifford-quadric (Eq. 32):


x0
x1
x2
x3

=


−1+uv

u+ v
−1−uv

u− v

 (35)

Hence, substitution of this parametrization nulls the left hand
side of the first of the Eqs. 31. The other two, after a little
rearrangement, assume the form of Eqs. 36

α2(u)v2 +α1(u)v+α0(u) = 0
β2(u)v2 +β1(u)v+β0(u) = 0

}
(36)

where the coefficients are the following quadratics in u:

α2(u) = 2e22(p22u2−2p21u− p22)

α1(u) = −4e21 p22(u2 +1)

α0(u) = −2e22(p22u2 +2p21u− p22)

β2(u) = −2(e31 p33− e32 p32− e33 p31)u2



− 4(e32 p31− e33 p32)u

− 2(e31 p33 + e32 p32 + e33 p31)

β1(u) = −4(e31 p32 + e32 p33)u2

− 8e33 p33u

− 4(e31 p32− e32 p33)

β0(u) = 2(e31 p33− e32 p32 + e33 p31)u2

− 4(e32 p31 + e33 p32)u

+ 2(e31 p33 + e32 p32− e33 p31)

An octic in u emerges when v is eliminated between Eqs. 36.
A neat dialytic method to do this is given in Eq. 37.

∣∣∣∣∣∣∣∣
α2(u) α1(u) α0(u) 0

0 α2(u) α1(u) α0(u)
β2(u) β1(u) β0(u) 0

0 β2(u) β1(u) β0(u)

∣∣∣∣∣∣∣∣= 0 (37)

To obtain values of v that correspond to the eight values of
u obtained with Eq. 37 consider that a given u = u0 numer-
ically defines all coefficients in Eqs. 36 so these two equa-
tions become redundant. Multiplying these, respectively, by
α2(u0) and β2(u0) and equating their difference to zero de-
fines v = v0 as Eq. 38.

v = v0 =
α0(u0)β2(u0)−α2(u0)β0(u0)

α2(u0)β1(u0)−α1(u0)β2(u0)
(38)

Using known pairs of u = u0,v = v0 in Eq. 35 yields all four
xi for up to eight poses of EE moved to FF via a spherical
displacement constrained by three PoP equations.

The diagram in Fig. 4, b) displays an architecture with
imposed joint parameters that generates a DK solution with
eight assembly modes. So once again an octic univariate is
minimal. This example uses three planes, x = 0,y = 0,z = 0,
upon which three absolute EE points, initially with respective
direction numbers (1,0,0),(0.5,0.48,0),(0.27,0.71,1.64),
are to be placed. The EE triangle is scalene. It was thus cho-
sen to visually contrast, by its asymmetry, its double place-
ment in each of four octants of the sphere and, of course, to
show a case with eight real assembly modes. The division of
the FF sphere into eight congruent spherical triangles brings
to ones attention that inscribing the EE triangle into any of
the other (blank) octants would involve parity reversal of the
EE triangle. I.e., exchanging concave and convex surface
orientation, like flipping heads and tails in the planar case, is
forbidden. Such “solutions” would thus not be valid ones.

5 Spatial Three-Legged Manipulator DK with Three
Line Constraints

This is a full mobility, i.e., six dof manipulator. It fits into the
category of reduced mobility –or rather reduced complexity–

because it is not fully parallel. Its three legs require two ac-
tuators each and thus its DK is much easier to solve than,
say, Husty’s general six-points-on-six-spheres problem [8].
Eq. 1 and six PoP constraints may be used in this case if
each given point must satisfy a pair of these, i.e., each pair of
planes intersects on one of the given lines. The spatial DTM
can be modelled in this way. The following three points Pi,
i = 1,2,3 and six planes εi, i = 1, . . . ,6, the latter to be taken
in successive pairs to represent lines, li, are without loss in
generality chosen to simplify equation coefficients and, more
important, to obtain a system that admits a reparametrization
approach to solution quite similar to that used, in section 4,
for the DK of three-legged spherical robots.

p1 =


1
0
0
0

 , p2 =


1

p21
0
0

 , p3 =


1

p31
p32
0



l1 . . . e1 =


0
0
1
0

 , e2 =


0
0
0
1



l2 . . . e3 =


1
0
0

e33

 , e4 =


0

e41
e42
0



l3 . . . e5 =


1

e51
e52
0

 , e6 =


1
0

e62
e63


This means that the first line l1 is the x-axis of the coordinate
frame in FF, that the z-axis of that coordinate system is the
common perpendicular of l1, l2 and that one of the two planes
fixing the third line l3 is parallel to z and the other one is
parallel to x.

Now the three terms, that contain yi, i = 0,1,2,3 in the
first column of the matrix in Eq. 2, are replaced by the trans-
lational components ti, i = 1,2,3, according to Eq. 5 and,
after carrying out the six transformations with Eq. 1 to get
qi, the products e>1,2q1, e>3,4q2, e>5,6q3 provide six constraint
equations. Notice that the original eight homogeneous Study
parameters have been reduced to seven by the replacement
of all terms containing y0,y1,y2,y3 with t1, t2, t3 so these six
equations are sufficient when the new system is dehomoge-
nized by setting x0 = 1. The first two, that express P1 ∈ l1,
yield t2 = 0 and t3 = 0. Substituting this result into the rest
leaves only t1, in two of the remaining four (Eqs. 39,. . . , 42).

x2
0 + x2

1 + x2
2 + x2

3−2e33 p21(x0x2− x1x3) = 0 (39)



p21[e41(x2
0 + x2

1− x2
2− x2

3)+2e42(x0x3 + x1x2)] +

e41t1 = 0 (40)

(1+ e51 p31 + e52 p32)x2
0 +

(1+ e51 p31− e52 p32)x2
1 +

(1− e51 p31 + e52 p32)x2
2 +

(1− e51 p31− e52 p32)x2
3 −

2(e51 p32− e52 p31)x0x3 +

2(e51 p32 + e52 p31)x1x2 +

e51t1 = 0 (41)

(1+ e62 p32)x2
0 +(1− e62 p32)x2

1 +

(1+ e62 p32)x2
2 +(1− e62 p32)x2

3 +

2e63 p32(x0x1 + x2x3)−2e63 p31(x0x2− x1x3) +

2e62 p31(x0x3 + x1x2) = 0 (42)

Next, t1 is eliminated from Eqs. 40, 41:

e41[1− e51(p21− p31)+ e52 p32]x2
0 +

e41[1− e51(p21− p31)− e52 p32]x2
1 +

e41[1+ e51(p21− p31)+ e52 p32]x2
2 +

e41(1+ e51(p21− p31)− e52 p32]x2
3 −

2(e41e51 p32− e41e52 p31 + e42e51 p21)x0x3 +

2(e41e51 p32 + e41e52 p31− e42e51 p21)x1x2 = 0 (43)

With Eqs. 39, 43, 42 we have obtained a system of three
homogeneous quadratic equations in x0,x1,x2,x3. The co-
efficients of this system are shown compressed in Eq. 44 to
make the final steps easier to follow.

x2
0 + x2

1 + x2
2 + x2

3−2k(x0x2− x1x3) = 0

a0x2
0 +a1x2

1 +a2x2
2 +a3x2

3 −
2a4x0x3 +2a5x1x2 = 0

b0(x2
0 + x2

2)+b1(x2
1 + x2

3) +
2b2(x0x1 + x2x3) −
2b3(x0x2− x1x3) +
2b4(x0x3 + x1x2) = 0


(44)

In the following we adapt the parametrization technique, in-
troduced in section 4, to the case at hand. The left hand side
of the first of the Eqs. 44 can be written as a sum of two
products whose factors are linear in x0,x1,x2,x3:

x2
0 + x2

1 + x2
2 + x2

3−2k(x0x2− x1x3) =

[x0− (k+ l)x2] [x0− (k− l)x2] +

[x1 +(k+ l)x3] [x1 +(k− l)x3]

where4

l =
√

k2−1.

Hence, if we apply the regular projective (coordinate) trans-
formation

y0 = x0− (k+ l)x2
y1 = x1 +(k+ l)x3
y2 = x1 +(k− l)x3
y3 = x0− (k− l)x2

 (45)

the quadric represented by the first of the Eqs. 44 becomes a
simple bilinear expression

y0y3 + y1y2 = 0

whose left hand side is again nulled by the parametrization
Eq. 34. Substitution of this parametrization into the inverse
transform

x0 = 1
2l [−(k− l)y0 +(k+ l)y3]

x1 = 1
2l [−(k− l)y1 +(k+ l)y2]

x2 = 1
2l [−y0 + y3]

x3 = 1
2l [y1− y2]

of (Eq. 45) yields


x0
x1
x2
x3

=


k− l +(k+ l)uv
(l− k)u+(l + k)v

1+uv
u− v

 (46)

i.e., a parametrization of the original quadric.5

Eqs. 37 and 38 are applied exactly as before, except for
the definition of the quadratic polynomials α2(u), . . . ,β0(u),
described below (Eq. 47).

4As one can easily check k2 − 1 ≥ 0 is equivalent with dist(P1,P2) ≥
dist(l1, l2). Clearly a solution to the DK problem exists only if the latter
condition holds.

5The factor 1
2l can be omitted since we deal with homogeneous equa-

tions.



α2(u) = [2a0k(k+ l)−a0 +a2]u2

+ 2(a4 +a5)(k+ l)u
+ 2a1k(k+ l)−a1 +a3

α1(u) = −2[a4(k+ l)+a5(k− l)]u2

+ 2(a0−a1 +a2−a3)u
+ 2[a5(k+ l)+a4(k− l)]

α0(u) = [2a1k(k− l)−a1 +a3]u2

− 2(a4 +a5)(k− l)u
+ 2a0k(k− l)−a0 +a2

β2(u) = 2(b0k−b3)(k+ l)u2

− 4b2[1− k(k+ l)]u
+ 2(b1k−b3)(k+ l)

β1(u) = 4b4l u2

+ 4(b0−b1)u
+ 4b4l

β0(u) = 2(b1k−b3)(k− l)u2

+ 4b2[1− k(k− l)]u
+ 2(b0k−b3)(k− l)



(47)

Again the solutions of an octic univariate in u, produced with
the determinant of Eq. 37, are back substituted into Eq. 38
and the corresponding v is solved linearly.

5.1 The Spatial Double Triangular Manipulator

A possible mechanical realization of the 3-points-on-3-lines
paradigm is the so called spatial double triangular manipula-
tor (spatial DTM) as introduced in [6].

Fig. 5(a), shows two frames, each consisting of three
skew lines. These are connected by three short CCC legs
where C is a cylindrical joint. Both dof of the ones on FF are
actuated. This was the design envisaged by Daniali [6] who
carried out no DK analysis. Fig. 5(b), on the right, shows
such a leg. This design, though theoretically feasible, em-
bodies a 3-intersecting-line-pairs paradigm which is fraught
with singularities and even two dof self-motion as described
by Zsombor-Murray and Hyder [16]. Adopting CRRC legs
as shown on the left of Fig. 5(b) solves the problem. The cen-
tres of the three unactuated C-joints become the three points
in FF upon which the three pairs of planes, that intersect on
the three lines in EE, are to be placed. These six planes can
be transformed by the procedure outlined above.

The sample solution in Fig. 5(c), revealing eight real
assembly modes, is an inversion, i.e., the three points in EE,
(0,0,0),(5,0,0),( 5

2 ,
5
√

3
2 ,0), were placed on the respective

plane pairs y= 0∩z= 0,x= 0∩z= 1,x= 1∩y= 1. Thus the
octic polynomial (see above) is demonstrated to be minimal.

(a) Equilateral Spatial DTM

C

R

C

R

C

C

C

(b) Two Possible Leg Joint Designs

P1
P2

P3

l1

l2

l3

(c) Example for Eight Real Solutions of the DK

Fig. 5. Spatial Double Triangular Manipulator

6 Conclusion
Direct kinematic problems for a wide variety of parallel ma-
nipulators have been solved in a unified fashion using point
kinematic mapping. All cases involved the writing of con-
straint equations that place a number of points on corre-
sponding surfaces, not always in the same number. However
once one begins to look at problems in this way the writing of
a sufficient set of such equations is made a lot easier. These
equations sets were then solved by introducing, or rather res-



urrecting in a more general engineering context, some not
so widely known algebraic techniques and thereby obtaining
some new results.

a) Reducing the PoP constraint to a quadric in Study param-
eters and similarly reducing the PoS constraint by inter-
secting the original quartic with the Study quadric and
confining the transformed point P to Euclidean space6,

b) Reduction of a partial set of constraints to a one param-
eter motion trajectory of the last point that is then inter-
sected with the remaining surface,

c) Reparametrization to reduce the number of variables and
constraint equations and

d) Neatly extracting an octic univariate from a pair of si-
multaneous bivariate quartics, like the system Eq. 36
wherein there are no cubic or quartic variable terms, as a
simple 4×4 determinant, Eq. 37, and exposing a linear
backsubstitution, Eq. 38, to obtain corresponding values
of the other variable.

e) Revealing for the first time an octic univariate polynomial
and eight real DK solutions for the spherical DTM.

f) Revealing for the first time an octic univariate polynomial
and eight real DK solutions for the spatial DTM.

Almost all cases examined pertained to manipulators of less
than six dof though there was one fully mobile example, the
spatial DTM, albeit a simplified problem because it was not
fully parallel, i.e., had more than one actuated joint per leg.
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