Abstract. The following geometric problem originating from an engineering task is being addressed: How can you move a rod in space so that its endpoint paths have equal length? Trivial examples of motions in the Euclidean plane and in Euclidean 3-space where two points A and B have paths of equal arc length are curved translations or screw motions. In the first case all point paths are congruent by translation and in the second all points on a right cylinder coaxial with the screw motion have congruent point paths. It turns out that in the plane there exists only one non-trivial type: If A and B have paths of equal arc length the motion is generated by the rolling of a straight line, namely the bisector n of AB on an arbitrary curve. In 3-space there is a nice relation to the ruled surface Φ generated by the line AB: The path of the midpoint S of AB is the striction curve on Φ.

This is also the key to the solution to the following interpolation problem: Given a set of discrete positions A_iB_i of a straight line segment AB find a smooth motion that moves AB through the given positions and additionally guarantees that the paths of A and B have equal arc length.

Keywords: space kinematics, line geometry, paths of equal arc length, motion of a line, ruled surface, striction curve, projection theorem

1 Introduction

We will investigate the problem of moving a rod AB via a Euclidean motion μ in a way that its endpoints A and B follow paths of equal arc length (cf. [3]). The planar and spatial cases are treated in Section 2 and 3, respectively. The main part of the paper (Section 4) is the investigation of the following interpolation problem:

Given a set of discrete positions A_iB_i of a straight line segment AB find a smooth motion of AB that interpolates the positions A_iB_i with the side condition that the paths of A and B have the same length. This will lead us to the task of constructing a ruled surface with given striction curve (cf. [1] and [2]).

In the following we always assume that all occurring functions are C^2.

2 The planar case

Let t denote the time and $a(t)$ and $b(t)$ be the position vectors of the endpoints A and B of a straight line segment moved in the plane. From

\[d := \text{dist}(A, B) = \text{const}. \]
we obtain
\[\langle \dot{a}, b - a \rangle = \langle \dot{b}, b - a \rangle \]

where "\(\dot{\cdot} \)" means differentiation w.r.t. time \(t \) and "\(\langle \cdot, \cdot \rangle \)" denotes the Euclidean scalar product. This means that
\[\angle(\vec{AB}, \dot{a}) = \pm \angle(\vec{AB}, \dot{b}). \]

If
\[\angle(\vec{AB}, \dot{a}) = \angle(\vec{AB}, \dot{b}) \]

holds on in interval \([t_0, t_1]\) then the motion under consideration is a \textit{curved translation}. The instantaneous pole is always at infinity and all points have paths congruent by translation (Fig. 1, left). If contrary
\[\angle(\vec{AB}, \dot{a}) = -\angle(\vec{AB}, \dot{b}) \quad (1) \]

then the pole always lies on the bisector \(n \) of \(\vec{AB} \) (Fig. 1, right), which therefore has to be the moving polhode if the condition (1) holds on an interval \([t_0, t_1]\). If \(S \) denotes the midpoint of \(\vec{AB} \) and \(s \) its path then \(\mu \) is the motion of the Frenet frame along \(s \) (Fig. 2). The fixed polhode is the evolute \(s^* \) of \(s \), the instantaneous pole being the center \(S^* \) of curvature of the curve \(s \).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1}
\caption{(a) Planar case A: The velocity vectors of \(A \) and \(B \) are identical. (b) Planar case B: \(\angle(\vec{AB}, \dot{a}) = -\angle(\vec{AB}, \dot{b}) \).}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2}
\caption{Figure 1: The two cases occurring in the plane.}
\end{figure}

We summarize in

\textbf{Proposition 1.} If two points \(A \) and \(B \) are moved w.r.t. a planar Euclidean motion \(\mu \) so that their paths \(a \) and \(b \) have equal arc length then \(\mu \) is either a curved translation or the motion of the Frenet frame along a curve \(s \). In the second case \(A \) and \(B \) lie symmetric w.r.t. the normal \(n \) of \(s \).
3 The spatial case

Let Φ be the ruled surface generated by the straight line $e := AB$ via a Euclidean motion μ:

$$\mathbf{y}(t, u) = \mathbf{x}(t) + u\mathbf{e}(t)$$

Here \mathbf{e} is a normalized direction vector of the the line e, i.e.,

$$\langle \mathbf{e}(t), \mathbf{e}(t) \rangle \equiv 1 \quad (2)$$

and t denotes the time. Then the two points A and B have position vectors $\mathbf{a}(t) = \mathbf{y}(t, a)$ and $\mathbf{b}(t) = \mathbf{y}(t, a + d)$ where $d := \text{dist}(A, B)$ and a are constants. Let us moreover assume that Φ is not a cylinder, which means that \mathbf{e} is not a constant vector.

From

$$|\dot{\mathbf{a}}| = |\dot{\mathbf{b}}|$$

we easily derive that

$$a + \frac{d}{2} = -\frac{\langle \dot{\mathbf{x}}, \dot{\mathbf{e}} \rangle}{\langle \dot{\mathbf{e}}, \dot{\mathbf{e}} \rangle}.$$

Hence we have

Proposition 2. If two points A and B are moved via a spatial Euclidean motion μ so that their paths a and b have equal arc length then the midpoint S of the straight line segment AB is the

\[
\begin{cases}
\text{striction point} \\
\text{point of regression} \\
\text{vertex}
\end{cases}
\quad \text{on } e, \text{ in case of } \Phi \text{ being a }
\begin{cases}
\text{skew ruled surface} \\
\text{tangent surface} \\
\text{cone}
\end{cases}
\]
4 An interpolation problem

We consider the following interpolation problem in 3-space: Given a set of discrete positions $A_i B_i$, $i = 1, \ldots, n$ of the segment AB find a smooth motion that moves AB through the given positions and additionally guarantees that the paths of A and B have equal arc length. Being aware of Proposition 2 we suggest to solve this problem in two steps:

Step 1: Determine an interpolation curve $s \ldots s(t)$ of the midpoint series S_i of $A_i B_i$, $i = 1, \ldots, n$.

Step 2: Construct a ruled surface Φ that interpolates $e_i = A_i B_i$ and whose striction curve is s.

Whereas the first step is a standard task the second needs some additional considerations. Let

$$s = s(\tau)$$

be the arclength parametrization of s and

$$e = e(\tau)$$

the direction vector of the ruled surface’s generator e which we have to determine. We assume that e is normalized:

$$\langle e, e \rangle = 1$$ \hspace{1cm} (3)

Denoting derivatives w.r.t. the arclength τ of s by $'$, $''$, ... and introducing the striction

$$\sigma := \langle s', e \rangle$$

of Φ we have

$$\langle s', e \rangle = \cos \sigma$$ \hspace{1cm} (4)

Moreover,

$$\langle s', e' \rangle = 0,$$

because s is the striction line on Φ. Thus, differentiating (4) we obtain

$$\langle s'', e \rangle = -\sigma' \cdot \sin \sigma.$$ \hspace{1cm} (5)

Let κ be the curvature and \{t = s', h = $\frac{1}{\kappa}s''$, b = t × h\} denote the Frenet frame of s. Then (4), (5) can be rewritten as

$$\langle t, e \rangle = \cos \sigma,$$ \hspace{1cm} (6)

$$\langle h, e \rangle = -\frac{\sigma' \cdot \sin \sigma}{\kappa}.$$ \hspace{1cm} (7)

which together with (3) yields

$$e = \cos \sigma \cdot t - \frac{\sigma' \cdot \sin \sigma}{\kappa} \cdot h \pm \sin \sigma \sqrt{1 - \frac{\sigma'^2}{\kappa^2}} \cdot b.$$ \hspace{1cm} (8)
We give a geometric interpretation of the formulae above (Fig. 3). Considering \(e \) as unknown position vector of a point, Eq. (4) represents a plane \(\varepsilon \) with normal vector \(s' \) and distance \(|\cos \sigma| \) from the origin. For running \(\tau \) we obtain a one parametric set of such planes. The envelope of these planes is a developable surface \(\Psi \) whose equation can be determined by eliminating \(\tau \) from the two equations Eq. (4) and Eq. (5). The latter represents another plane \(\varepsilon_1 \) perpendicular to \(\varepsilon \). In order to find suitable vectors \(e \) we have to intersect the generators \(g = \varepsilon \cap \varepsilon_1 \) of \(\Psi \) with the unit sphere represented by Eq. (3):

The spherical generator image of \(\Phi \) lies in the intersection of the developable surface \(\Psi \) and the unit sphere.

[Diagram: Figure 3: Spherical image of a generator \(e \)]

Making use of this we can now tackle Step 2 by constructing a function \(\sigma = \sigma(\tau) \) which fulfills

\[
\begin{align*}
\sigma(\tau_i) & = \arccos\langle s'(\tau_i), e_i \rangle, \\
\sigma'(\tau_i) & = -\frac{\langle s''(\tau_i), e_i \rangle}{\sin \sigma(\tau_i)}, \\
\sigma'^2(\tau) & \leq \kappa^2(\tau).
\end{align*}
\]

Here \(\tau_i \) is the arc length parameter value belonging to the midpoint \(S_i \) of the given segment \(A_iB_i, \ i = 1, \ldots, n \) and \(e_i := \frac{A_iB_i}{|A_iB_i|} \). After having fixed the function \(\sigma = \sigma(\tau) \) the direction vector \(e = e(\tau) \) is determined via Eq. (8).

The ruled surface \(\Phi \) in Fig. 4 was constructed by the method outlined above. In this example four generators \(e_i = A_iB_i, \ i = 1, 2, 3, 4 \) were given. The striction curve \(s \) was then constructed as interpolant of the midpoints \(S_1, S_2, S_3, S_4 \) (Step 1) and reparametrized w.r.t. arclength. Afterwards a suitable striction function \(\sigma = \sigma(\tau) \) was constructed (Step 2) as Hermite interpolant fulfilling the conditions (9), (10) and (11).
Figure 4: Ruled surface Φ interpolating the segments A_iB_i; the endpoints A and B are symmetric w.r.t. the striction curve s and run on curves of equal length.

Remarks:

(a) As condition (3) is quadratical the proposed method can fail if the sign chosen in front of the square root in (8) differs for the prescribed generators $e_i, i = 1, \ldots, n$.

(b) Eq. (8) can already be found in [1] where it is derived in another way.

(c) In [2] a method to construct ruled surfaces Φ from a given striction curve $s \ldots s = s(t)$ is suggested: As the generators of a ruled surface are geodesically parallel along the striction curve one can take any developable surface Δ through s, develop it into a plane π, then choose an arbitrary direction in π and draw the lines $g(t)$ parallel to this direction. Bringing these lines back into space by means of the inverse developing mapping one gets the generators of a solution surface Φ. This method is not appropriate to solve the task in Step 2 as we are given a set of prescribed generators $e_i = A_iB_i, i = 1, \ldots, n$.

References

