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Abstract. The following geometric problem originating from an engineering task is being addressed:
How can you move a rod in space so that its endpoint paths have equal length? Trivial examples
of motions in the Euclidean plane and in Euclidean 3-space where two points A and B have paths
of equal arc length are curved translations or screw motions. In the first case all point paths are
congruent by translation and in the second all points on a right cylinder coaxial with the screw motion
have congruent point paths. It turns out that in the plane there exists only one non-trivial type: If A
and B have paths of equal arc length the motion is generated by the rolling of a straight line, namely
the bisector n of AB on an arbitrary curve. In 3-space there is a nice relation to the ruled surface Φ
generated by the line AB: The path of the midpoint S of AB is the striction curve on Φ.

This is also the key to the solution to the following interpolation problem: Given a set of discrete
positions AiBi of the segment AB find a smooth motion that moves AB through the given positions
and additionally guarantees that the paths of A and B have equal arc length.

Keywords: space kinematics, line geometry, paths of equal arc length, motion of a line, ruled surface,
striction curve, projection theorem

1 Introduction

We will investigate the problem of moving a rod AB via a Euclidean motion µ in a way that its
endpoints A and B follow paths of equal arc length (cf. [3]). The planar and spatial cases are treated
in Section 2 and 3, respectively. The main part of the paper (Section 4) is the investigation of the
following interpolation problem:

Given a set of discrete positions AiBi of a straight line segment AB find a smooth motion of AB
that interpolates the positions AiBi with the side condition that the paths of A and B have the same
length. This will lead us to the task of constructing a ruled surface with given striction curve (cf. [1]
and [2]).

In the following we always assume that all occurring functions are C2.

2 The planar case

Let t denote the time and a(t) and b(t) be the position vectors of the endpoints A and B of a straight
line segment moved in the plane. From

d := dist(A,B ) = const.



we obtain

〈ȧ,b− a〉 = 〈ḃ,b− a〉

where ” ˙ “ means differentiation w.r.t. time t and ”〈., .〉“ denotes the Euclidean scalar product. This
means that

∠( ~AB, ȧ) = ±∠( ~AB, ḃ).

If

∠( ~AB, ȧ) = ∠( ~AB, ḃ)

holds on in interval [t0, t1] then the motion under consideration is a curved translation. The instan-
taneous pole is always at infinity and all points have paths congruent by translation (Fig. 1, left). If
contrary

∠( ~AB, ȧ) = −∠( ~AB, ḃ) (1)

then the pole always lies on the bisector n of AB (Fig. 1, right), which therefore has to be the moving
polhode if the condition (1) holds on an interval [t0, t1]. If S denotes the midpoint of AB and s its
path then µ is the motion of the Frenet frame along s (Fig. 2). The fixed polhode is the evolute s∗ of
s, the instantaneous pole being the center S∗ of curvature of the curve s.
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(a) Planar case A: The velocity vectors of A and B are
identical.
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(b) Planar case B: ∠( ~AB, ȧ) = −∠( ~AB, ḃ).

Figure 1: The two cases occurring in the plane.

We summarize in

Proposition 1. If two points A and B are moved w.r.t. a planar Euclidean motion µ so that their
paths a and b have equal arc length then µ is either a curved translation or the motion of the Frenet
frame along a curve s. In the second case A and B lie symmetric w.r.t. the normal n of s.
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Figure 2: General planar motion where 2 points A and B have paths of equal length: The bisector n
of the segment AB is the moving polhode.

3 The spatial case

Let Φ be the ruled surface generated by the straight line e := AB via a Euclidean motion µ:

y(t, u) = x(t) + ue(t)

Here e is a normalized direction vector of the the line e, i.e.,

〈e(t), e(t)〉 ≡ 1 (2)

and t denotes the time. Then the two points A and B have position vectors a(t) = y(t, a) and
b(t) = y(t, a + d) where d := dist(A,B) and a are constants. Let us moreover assume that Φ is not
a cylinder, which means that e is not a constant vector.

From

|ȧ| = |ḃ|

we easily derive that

a+
d

2
= −〈ẋ, ė〉

〈ė, ė〉
.

Hence we have

Proposition 2. If two points A and B are moved via a spatial Euclidean motion µ so that their
paths a and b have equal arc length then the midpoint S of the straight line segment AB is the

striction point
point of regression

vertex

 on e, in case of Φ being a


skew ruled surface

tangent surface
cone

.



4 An interpolation problem

We consider the following interpolation problem in 3-space: Given a set of discrete positions AiBi,
i = 1, . . . , n of the segment AB find a smooth motion that moves AB through the given positions and
additionally guarantees that the paths of A and B have equal arc length. Being aware of Proposition
2 we suggest to solve this problem in two steps:

Step 1: Determine an interpolation curve s . . . s(t) of the midpoint series Si of AiBi, i = 1, . . . , n.

Step 2: Construct a ruled surface Φ that interpolates ei = AiBi and whose striction curve is s.

Whereas the first step is a standard task the second needs some additional considerations. Let

s = s(τ)

be the arclength parametrization of s and

e = e(τ)

the direction vector of the ruled surface’s generator e which we have to determine. We assume that e
is normalized:

〈e, e〉 τ≡ 1 (3)

Denoting derivatives w.r.t. the arclength τ of s by ′, ′′, ... and introducing the striction

σ := ∠(s′, e)

of Φ we have

〈s′, e〉 = cos σ (4)

Moreover,

〈s′, e′〉 = 0,

because s is the striction line on Φ. Thus, differentiating (4) we obtain

〈s′′, e〉 = −σ′ · sinσ. (5)

Let κ be the curvature and {t = s′,h = 1
κs
′′,b = t× h} denote the Frenet frame of s. Then (4), (5)

can be rewritten as

〈t, e〉 = cos σ, (6)

〈h, e〉 = −σ
′ · sinσ
κ

(7)

which together with (3) yields

e = cosσ · t − σ′ · sinσ
κ

· h ± sinσ

√
1− σ′2

κ2
· b. (8)



We give a geometric interpretation of the formulæ above (Fig. 3). Considering e as unknown position
vector of a point, Eq. (4) represents a plane ε with normal vector s′ and distance | cosσ| from the
origin. For running τ we obtain a one parametric set of such planes. The envelope of these planes is
a developable surface Ψ whose equation can be determined by eliminating τ from the two equations
Eq. (4) and Eq. (5). The latter represents another plane ε1 perpendicular to ε. In order to find suitable
vectors e we have to intersect the generators g = ε ∩ ε1 of Ψ with the unit sphere represented by Eq.
(3):

The spherical generator image of Φ lies in the intersection of the developable surface Ψ and the unit
sphere.

Figure 3: Spherical image of a generator e

Making use of this we can now tackle Step 2 by constructing a function σ = σ(τ) which fulfills

σ(τi) = arccos〈s′(τi), ei〉, (9)

σ′(τi) = −〈s
′′(τi), ei〉

sinσ(τi)
, (10)

σ′2(τ) ≤ κ2(τ). (11)

Here τi is the arc length parameter value belonging to the midpoint Si of the given segment AiBi,
i = 1, . . . , n and ei :=

−−−→
AiBi

|
−−−→
AiBi|

. After having fixed the function σ = σ(τ) the direction vector e = e(τ)

is determined via Eq. (8).

The ruled surface Φ in Fig. 4 was constructed by the method outlined above. In this example four
generators ei = AiBi, i = 1, 2, 3, 4 were given. The striction curve s was then constructed as
interpolant of the midpoints S1, S2, S3, S4 (Step 1) and reparametrized w.r.t. arclength. Afterwards
a suitable striction function σ = σ(τ) was constructed (Step 2) as Hermite interpolant fulfilling the
conditions (9), (10) and (11).



Figure 4: Ruled surface Φ interpolating the segments AiBi; the endpoints A and B are symmetric
w.r.t. the striction curve s and run on curves of equal length.

Remarks:
(a) As condition (3) is quadratical the proposed method can fail if the sign chosen in front of the

square root in (8) differs for the prescribed generators ei, i = 1, . . . , n.

(b) Eq. (8) can already be found in [1] where it is derived in another way.

(c) In [2] a method to construct ruled surfaces Φ from a given striction curve s . . . s = s(t) is
suggested: As the generators of a ruled surface are geodesically parallel along the striction
curve one can take any developable surface ∆ through s, develop it into a plane π, then choose
an arbitrary direction in π and draw the lines g(t) parallel to this direction. Bringing these
lines back into space by means of the inverse developing mapping one gets the generators of a
solution surface Φ. This method is not appropriate to solve the task in Step 2 as we are given a
set of prescribed generators ei = AiBi, i = 1, . . . , n.
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