
Geometry and Kinematics of the Mecanum

Wheel

A. Gfrerrer

Graz University of Technology, Institute of Geometry, Kopernikusgasse 24, 8010
Graz, Austria

Abstract

Mecanum wheels are used when omnidirectional movability of a vehicle is desired.
That means that the vehicle can move along a prescribed path and at the same
time rotate arbitrarily around its center. A Mecanum wheel consists of a set of rolls
arranged around the wheel axis. In this paper we describe in detail the geometry of
these rolls. We derive simple canonical parameterizations of the roll generating curve
and the roll surface itself. These parametric representations reveal the geometry of
the roll. With their help we can easily find an approximation of the roll surface by
a torus for manufacture purposes. Based on the roll parametrization we study the
kinematics of a vehicle featured with Mecanum wheels.
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1 Introduction

The Mecanum wheel (Fig. 1, left) was invented by the Swedish engineer Bengt
Ilon in 1973. 1 It consists of a set of k congruent rolls placed symmetrically
around the wheel body. The face of each roll is part of a surface of revolution
R whose axis b is skew to the wheel axis a. Usually an angle δ between a
and b of ±45◦ is chosen. Fig. 1, right, shows (the setup of) a mobile robot
furnished with three wheels of that kind. Each of them is driven by a separate
motor which gives the vehicle the three degrees of freedom necessary for an
omnidirectional movement on level ground. The advantage of this architecture
is that none of the wheels needs to be steerable. The wheel rolls rotate passively
around their axes.

Email address: gfrerrer@tugraz.at (A. Gfrerrer).
1 See the US patent 3,876,255 [Ilon (1975)].
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Fig. 1. Left: Mecanum wheel Right: Vehicle with 3 Mecanum wheels

The parametrization in [Dickerson & Lapin (1991)] of the roll generating curve
is rather involved and does not reveal the geometry of the roll. With the help
of Descriptive Geometry we derive a pretty natural parametrization of this
curve which also yields simple parametric representations of the roll surface
and its meridian (section 2). In section 3 we use these parametrizations to
replace the roll by an approximating torus surface. Moreover, we derive the
exact velocity equation for a kinematic system with a Mecanum wheel (section
4, Eq. (15)). With ”exact” we mean that the position of the contact point C
of the roll and the terrain is also taken into account. In the literature on the
kinematics of Mecanum wheels it is (as a simplification) always assumed that
C at any moment lies exactly beneath the wheel center (cf. for example with
[Viboonchaicheep et al. (2003)] or [Siegwart & Nourbakhsh (2004), page 59]).
Using this simplification we finally study the case of a vehicle supplied with
three Mecanum wheels (section 4.1) and give a nice geometric characterization
for the solvability of the forward kinematics of a such a robot.

2 Roll geometry of the Mecanum wheel

The roll axes of a Mecanum wheel establish a set of k equidistant generators
belonging to a regulus on a one-sheet hyperboloid H of revolution with axis
a. If the wheel moves on a plane terrain π its axis a remaining parallel to π
then at each moment at least one roll touches the ground. Hereby a passive
(non driven) rotation around the roll axis b is induced to the respective roll
by the motion. Of course, it is desired to avoid vibration or jiggling of the
vehicle throughout the motion, which means that the wheel axis a must keep
a constant distance to the plane π:

dist(π, a) = r = const (1)
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Hence, the question is how to construct the roll surface R so that condition
(1) is fulfilled. Fig. 2, left, shows the situation in ground view (first projection)
and corresponding front view (second projection) 2 both, the wheel axis a and
the roll axis b, being parallel to the first projection plane. The rays for the
second projection are parallel to a, i.e., the second image a′′ of a is a point.
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Fig. 2. Curve cR generating the rolls

Geometrically condition (1) means that the curve cR that generates the roll
surface R has to be a part of the cylinder Z of revolution with axis a and
radius r. This curve is the locus of contact points of R with the plane π. The
roll R and the cylinder Z are tangent to each other along cR.

If C ′′ ∈ c′′R is the second image of a point C ∈ cR we can easily construct its
first image C ′:

• Let n denote the surface normal of R running through C. Since the circle
c′′R is the second silhouette of R n′′ is the diameter of c′′R containing C ′′.
• Because n is a surface normal in a contour point w.r.t. the second projection

it lies parallel to the plane of this projection and hence its first projection
n′ is a horizontal line.
• As R is a surface of revolution n has to intersect b in a point N . In this

way, the first image n′ of n and with it the first image C ′ of C is fixed.

The above construction also yields a simple parametrization of cR. Let p denote
the common perpendicular of a and b and let A be the intersection point of

2 We mark the first (second) image of an object by one (two) prime(s).
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p and a, i.e., the wheel center. We denote the distance and angle of a and b
by d and δ and introduce a coordinate system S := {A; ex, ey, ez} whose first
and third unit vector ex and ez is on a and p, respectively. As parameter we
use the angle u between p and n. With the help of Fig. 2 we derive

x(u) =


x(u)

y(u)

z(u)

 =


d cot δ tanu

r sinu

−r cosu

 (2)

as parametrization of cR. Since the two axes a and b are skew cot δ 6= ∞ is
guaranteed.

Eq. (2) tells us that cR in general is a rational 4th order space curve. This
follows for instance by re-parameterizing cR via τ = tan u

2
.

Only in case of b⊥a (δ = ±π
2
) cR is an ordinary circle with radius r. Wheels

of that type are often called ”Swedish wheels” in the literature.

Fig. 2, right, gives an impression of the curve cR which consists of two branches.
It has the axis a of the cylinder Z and the common perpendicular p of a and b
as symmetry axes. Thus, the common perpendicular q of a and p is also a sym-
metry axis of cR. The curve intersects p in the points P (0, 0,−r), P (0, 0, r) and
if δ 6= ±π

2
it has the generators g1,2 . . . z = 0, y = ±r of Z as asymptotes. The

axis b and cR meet in the common pointsK1,2(±
√
r2 − d2 cot δ,±

√
r2 − d2,−d)

of b and Z.

Since the curve cR consists of two parts in case of δ 6= ±π
2
, the same is true

for the roll surface R. Fig. 3 shows the part of R generated by the branch of
cR running through P . The roll R is a surface of revolution with axis b and a
symmetry plane σ through p and orthogonal to b. The common point B of b
and p is the symmetry center of R. The circle eP ⊂ σ through P and centered
in B is an equator on R, that means it has locally maximal radius, namely
r − d. The two points K1,2 are conical knots on R.

Remark: The surface normals n used in the construction above intersect
the lines a, b and the line at infinity of the yz-plane. Hence, if δ 6= ±π

2
they

establish a generator set on a hyperbolic paraboloid P . As one can easily check
P has the equation

x z + d cot δ y= 0.

The y-axis of the coordinate system is the axis of P and A is its vertex. The
second generator set on P consists of lines parallel to the xy-plane. Thus, P

4



intersects the plane at infinity in the two lines at infinity of the xy- and yz-
plane. The curve cR is the intersection curve of P and the cylinder Z. From
this fact, we can see again (in a purely geometric way) that cR is a rational
fourth order curve with the asymptotes described above. The singular point of
cR is the point X∞ at infinity of the x-axis since this point is the vertex of the
cylinder R and at the same time lies on the paraboloid P . The tangent plane
τ of P in X∞ is the xy-plane and intersects the cylinder in the two tangents
g1,2 of cR in its singular point X∞.
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Fig. 3. The roll surface R

As a surface of revolution generated by a rational curve cR R itself is also
rational. If δ 6= ±π

2
the algebraic order of R is 8, i.e., twice the order of its

generating curve cR. In the special case of δ = ±π
2

the roll surface R is a torus
whose meridian circle cR intersects its axis b in K1,2.

Of course, for the physical roll of the Mecanum wheel only a certain part of
R lying between the knots K1,2 is taken.

To obtain a suitable representation of the roll surface R we use a new coordi-
nate system S∗ := {B; e∗x, e

∗
y, e
∗
z} with origin in B, x-axis x∗ = b and the new

z-axis coincident with the old one (Fig. 3). W.r.t. this system the curve cR
has the parametrization

x∗(u) =


d cos2 δ

sin δ
tanu+ r sin δ sinu

cos δ tanu (r cosu− d)

d− r cosu

 . (3)
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By rotation around the x∗-axis with angle v we find

y∗(u, v) =


x∗(u, v)

y∗(u, v)

z∗(u, v)

 =


d cos2 δ

sin δ
tanu+ r sin δ sinu

(r cosu− d)(cos δ tanu cos v + sin v)

(r cosu− d)(cos δ tanu sin v − cos v)

 (4)

as parametrization of R.

Putting y∗ = 0 we obtain tan v = − cos δ tanu which after substitution into
the third line of (4) yields together with the first line a parametrization of the
meridian curve mR of the roll that lies in the x∗z∗-plane (parameter u):

mR . . .

x
∗(u) = d cos2 δ

sin δ
tanu+ r sin δ sinu

z∗(u) = −
√

cos2 δ tan2 u+ 1 (r cosu− d)

 (5)

More accurately: (5) is the parametrization of one of the two branches of the
meridian curve; the other branch is symmetric to the first one w.r.t. the axis
b = x∗ of revolution and one gets its parametrization by changing the sign in
front of the square root.

3 Approximation of the roll by a torus

As we have seen in the previous section the roll surface R of a Mecanum wheel
is algebraic of order 8 generated by a fourth order space curve cR. The natural
parametrizations (Eq. 4) of the roll surface and its meridian curve (Eq. 5) can
be used for manufacturing the roll precisely. But since the rolls usually have
a flexible rubber coat it is sufficient to use a less complicated surface which
approximates R sufficiently accurate. For instance, one could approximate the
meridian curve by a suitable conic section or a rational freeform curve. As an
example, we will construct an approximating torus surface T for the roll R.

Problem 1 Construct a torus T with axis b so that T and the roll surface R
have contact of order 2 along the equator circle eP .

Due to the symmetry with respect to the plane σ of eP the center of the
wanted torus T must be the point B. Fig. 4, left, shows the situation in the
x∗z∗-plane: One of the two meridian circles of R in this plane has to osculate
the roll meridian mR (Eq. (5)) at P . Let us denote this meridian circle by mT .
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Vice versa, if mR and mT have contact of order k in P than the same is true
for the generated surfaces R and T along eP .

The equation of mT can be set up as

F (x∗, z∗) := x∗2 + (z∗ − rl)2 − r2m = 0. (6)

Here rl and rm denote the yet unknown radii of the center circle l and of the
torus meridian circle mT .
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Fig. 4. Two ways to construct an approximating torus

By substitution of (5) into (6) we obtain the function

f(u) := sin2 u

(
d

cos2 δ

sin δ cosu
+ r sin δ

)2

+
(√

cos2 δ tan2 u+ 1 (r cosu− d) + rl

)2

− r2m (7)

in u. Since both of the curves mR and mT are symmetric w.r.t. z∗ f is an even
function. Hence, all derivatives of odd order vanish at u = 0:

∂f

∂u

∣∣∣∣∣
u=0

=
∂3f

(∂u)3

∣∣∣∣∣
u=0

= . . .= 0

This is true for arbitrary values of rl, rm.

Now we determine rl and rm so that the two additional conditions

f(0) = (rl − d+ r)2 − r2m = 0,

∂2f

(∂u)2

∣∣∣∣∣
u=0

= 2
(r sin2 δ + d cos2 δ)(d− rl sin2 δ)

sin2 δ
= 0

are fulfilled. The solution is
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rl =
d

sin2 δ
, (8)

rm = r + d cot2 δ. (9)

For these values of rl and rm all derivatives of f up to order 3 are zero at
u = 0. Therefore, the roll meridian curve mR and the meridian circle mT of
the torus have contact of order 3 in the point P . The same is true for the
generated surfaces of revolution along their common equator eP :

Theorem 1 The roll surface R and the coaxial torus T with center circle
l ⊂ σ (center B, radius rl = d

sin2 δ
) and meridian circle radius rm = r+d cot2 δ

have contact of order 3 along their common equator circle eP .

Exactly in case of Swedish wheels (δ = ±π
2
) the torus surface T and the roll

surface R are identical.

If especially δ = ±π
4

(the case that mainly occurs in praxis) the radii of the
torus are

rl = 2d, rm = r + d.

Theorem 1 says that close to their common equator eP the torus T approxi-
mates the roll surface R well. Fig. 4, left, shows both roll meridian mR and
torus meridian circle mT . On the other hand this figure also reveals that at
some distance from P the approximation is not satisfying. So, if a Mecanum
wheel is supplied with rolls of bigger length it may be advantageous to use a
torus T̃ for the approximation whose meridian circle mT̃ is tangent to mR at
P and additionally contains another point Q of mR (Fig. 4, right). The point
Q can be computed with the help of (5). The approximation order of T̃ along
eP is only C1 but at the outside regions one obtains a better approximation.

4 Kinematics of the Mecanum wheel

We consider a vehicle moving on level ground and furnished with Mecanum
wheels like the one in (Fig. 1, right). Let us analyze the situation for one of
the wheels at a certain moment t (Fig. 5). Four systems are involved: the
terrain Σ0, the vehicle Σ1, the wheel Σ2 and the roll Σ3 which at that moment
touches the ground at a certain point C (contact point). Note that this point
always lies beneath the axis a of the wheel Σ2: It is the intersection point of
the orthogonal projections of the wheel axis a and the roll axis b in Σ0. Only
in case of b being in a horizontal position C lies beneath the wheel center A!
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Fig. 5. Velocities for a vehicle with Mecanum wheels

For the analytical description we choose an arbitrary point O1 (”vehicle cen-
ter”) in Σ1 as origin of a coordinate system S1 := {O1; e1x, e1y, e1z} connected
with the vehicle Σ1, the x- and y-axis being parallel to the ground. The wheel
center A may have x- and y-coordinates ax and ay w.r.t. S1 and α may denote
the angle between e1x and the wheel axis a. Then

a=


cosα

sinα

0


is the direction vector of a. The direction vector b of the roll axis depends on
the rotation angle u of the wheel as follows:

b =


cosα cos δ − sinα sin δ cosu

sinα cos δ + cosα sin δ cosu

sin δ sinu

 =:


bx

by

bz

 (10)

W.r.t. S1 the contact point C has the x- and y-coordinates

cx = ax − d cosα cot δ tanu

cy = ay − d sinα cot δ tanu

 . (11)

In the following considerations we can neglect the z-coordinates since the
occurring velocity vectors are all parallel to the xy-plane.

Let ω be the angular velocity of the motion Σ1/Σ0 (vehicle/ground) and
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vO1,01 = (vx, vy)
> be the velocity vector of O1 for that motion at the in-

stant t. Then the vectorial velocity of the contact point C(cx, cy) w.r.t. the
motion Σ1/Σ0 is 3

vC,01 =

 vx − ωcy
vy + ωcx

 . (12)

The motion Σ2/Σ1 (wheel/vehicle) is a simple rotation around the axis a,
hence, the velocity vector of C for this motion is

vC,12 = u̇ r

− sinα

cosα

 (13)

where u̇ = du
dt

is the angular velocity of Σ2/Σ1.

The motion Σ3/Σ2 (roll/wheel) is a rotation around b. Thus, the instantaneous
vectorial velocity vC,23 of C is perpendicular to b (Eq. (10)):

vC,23 =λ

−by
bx

 (14)

The velocity vector vC,03 of C for the motion Σ3/Σ0 (roll/ground) has to be
zero since the (passive) roll moves on the ground without sliding. Using the
additivity rule for velocities of composed motions we obtain the condition

vC,01 + vC,12 + vC,23 =vC,03 = o = (0, 0)>

which by substitution of (12), (13), (14) yields

r sinα u̇+ by λ = vx − ω cy
r cosα u̇+ bx λ = −vy − ω cx

 .
By elimination of λ we get the differential equation

3 One can construct the vector vC,01 from the input vO1,01, ω as indicated in
Fig. 5. Here I denotes the instantaneous pole and tan θ = ω. Compare also with
[Wunderlich (1970), page 22] or [Bottema & Roth (1990), page 258].
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r(bx sinα− by cosα) u̇− bx(vx − ωcy)− by(vy + ωcx) = 0 (15)

ruling the connection between the vehicle motion and the wheel rotation. The
terms bx, by, cx, cy in this equation are functions in u according to the equations
(10), (11) and u itself, of course, depends on time t.

If we study the motion globally, the situation is rather complicated. While one
roll of the wheel is in contact with the ground the contact point C moves from
the first side of the wheel to the second. When the turn is on the next roll
C jumps back to the first side again. It follows that bx(u), by(u), cx(u), cy(u)
are functions with jump discontinuities corresponding to the changes of the
rolls. 4

This is the reason that for practical purposes 5 it is assumed that the contact
point C in the average lies beneath the wheel center A. By this simplification
we can put bx = cos(α+δ), by = sin(α+δ), cx = ax, cy = ay in Eq. (15). Then
we obtain

u̇=− 1

r sin δ
[sin(α + δ) (vy + ωax) + cos(α + δ) (vx − ωay)] . (16)

This formula allows to compute the (approximate) wheel velocity u̇ for given
vehicle velocity data vx, vy, ω.

4.1 Example: Kinematics of a vehicle with three Mecanum wheels

As an example we study the case of a vehicle supplied with three Mecanum
wheels with wheel centers Ai(aix, aiy) and wheel axis angles αi, i = 1, 2, 3.
If we denote the corresponding angular velocities of the wheels by ωi then
according to Eq. (16) we have


ω1

ω2

ω3

=− 1

r sin δ
M


vx

vy

ω

 (17)

4 Moreover, to avoid vibration the rolls are arranged around the wheel body in a
way that the silhouettes of adjacent rolls are slightly overlapping. This means that
at the change of two rolls both of them are in contact with the ground for a short
time interval, one close to the first side of the wheel and the other close to the
second.
5 See [Viboonchaicheep et al. (2003)] or [Siegwart & Nourbakhsh (2004), page 59].
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with

M=


cos(α1 + δ) sin(α1 + δ) a1x sin(α1 + δ)− a1y cos(α1 + δ)

cos(α2 + δ) sin(α2 + δ) a2x sin(α2 + δ)− a2y cos(α2 + δ)

cos(α3 + δ) sin(α3 + δ) a3x sin(α3 + δ)− a3y cos(α3 + δ)

 .

Eq. (17) is the solution to the inverse kinematic problem of the vehicle:

Inverse Kinematic Problem:
Given: Angular velocity ω of the vehicle Σ1 and vectorial velocity (vx, vy)

> of
the vehicle center O1;
Wanted: Angular velocities ωi of the wheels i = 1, 2, 3;

Conversely, we have the

Forward Kinematic Problem:
Given: Angular velocities ωi of the wheels i = 1, 2, 3;
Wanted: Angular velocity ω of the vehicle Σ1 and vectorial velocity (vx, vy)

>

of the vehicle center O1;

Clearly, a unique solution for the forward kinematic problem exists if and only
if detM 6= 0, namely


vx

vy

ω

=−r sin δ M−1


ω1

ω2

ω3

 . (18)

Our simplification from above means that the axis bi of the roll that is in
contact with the ground is assumed to be horizontal, roll center Bi and contact
point Ci lying exactly beneath the wheel center Ai(aix, aiy). In this position
(the first projection of) bi has the equation

− sin(αi + δ) (x− aix) + cos(αi + δ) (y − aiy) = 0.

In other words, the line coordinates of bi are

(− sin(αi + δ), cos(αi + δ), aix sin(αi + δ)− aiy cos(αi + δ)) .

If one multiplies the second column of M with −1 and additionally exchanges
this column with the first one then the i-th row of the modified matrix is
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identical with that vector. Hence, detM = 0 is equivalent to the condition
that the three roll axes meet in a common point I which can also be at infinity.
As a result we have

Theorem 2 The direct kinematics of a robot with three Mecanum wheels has
a unique solution if and only if the wheels are arranged so that the roll axes
are not concurrent or parallel.

In a bad wheel arrangement with the roll axes running through a common
point I the possible self motion of the vehicle is the rotation around I. In this
case the three contact rolls rotate around their axes even if the wheel motors
stand still. Such an unwanted self motion might be induced by slightly inclined
terrain. Of course, this effect also shows up in case of vehicles with more than
three Mecanum wheels.

5 Conclusions

In the paper I give some detailed geometric analysis of Mecanum wheels and
work out natural parametrizations of the roll surface (Eq. 4) and its meridian
curve (Eq. 5). The result can be used for manufacturing the rolls precisely.
Alternatively I investigate suitable approximations of the roll surface by torus
patches (section 3).

Moreover I show that the instantaneous contact point C of a roll moves from
one side of the Mecanum wheel to the opposite as the wheel rotates. This is
neglected in the standard literature which might be a reason for deviations
between the real and the predicted motion of a vehicle on such wheels. I
develop the differential equation ruling the connection between the vehicle
velocity and the angular velocity of the wheel (Eq. 15). This could be the
starting point for some more accurate analysis of the kinematics of Mecanum
wheel vehicles in future research work. As a drawback the formula requires
the knowledge of the rotation angle function u = u(t) of the wheel which may
not be available in practice.

Finally, by returning to the simplified equation between the vehicle and wheel
velocities, I deliver some nice geometric characterization of singular wheel
constellations (Theorem 2).
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