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Abstract The wrist centre positioning problem (WP) peculiar to the motion pro-
duced by the first three joints of a general six revolute jointed (6R), wrist partitioned
serial robot and the underlying geometry is reexamined. Conventionally a sequence
of six rotational operations, alternately in terms of known geometric parameters and
unknown joint angles, expresses the desired position. However the solution can be
represented by four intersection points between a fourth order cyclid, and a circle.
Properties of the curves of intersection of the cyclid with the absolute plane re-
veal why the univariate polynomial (UVP) is of fourth degree rather than eighth
as indicated by the Bezout number. Simple cyclid geometry makes it convenient to
investigate specific 3R positioning architectures and expose degenerate cases.

1 Introduction

The classical solution of (WP) is detailed in Angeles [1, pp. 117] employing typical
“closure equations”: three scalar rearrangements of the forward kinematic equa-
tion (Eq. 1) of a serial 3R chain. Another solution, with Study parameters [6] in
7-dimensional kinematic image space, of (WP) is described as intersection of a 4-
dimensional object (Segre manifold) of algebraic degree 4 with a 3-dimensional
linear subspace by Husty et al [3] and by Pfurner [5]). They also show that (WP)
is a quartic problem. Remarkably, aside from the references cited above, the au-
thors could find no seminal references on this topic, only textbook treatments like
[2, pp.428]; essentially variants of that found in [1]. Similarly, nothing to elaborate
on the origins of kinematic implication concerning Serge manifolds, used to solve
(WP) en-passant in [3] and [5], appears in the 26 item bibliography of the survey
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article [4]. In contrast, herein (WP) is addressed explicitly and solved by intersect-
ing common geometric 3D objects. The primary motivation of this exercise was to
enhance understanding of (WP) by transforming it from a sequence of matrix op-
erations to the visualization of three circular arcs that represent the required joint
angles. One is on the circle that the wrist point traces as it is counter-rotated about
the first joint axis, the second on a latitude circle of the cyclid and the third on a
meridian circle of that surface.

2 Problem example, definition and formulation

The specific example illustrated in Fig. 1, b) was solved with the two-step procedure
detailed just after Eq. 11 using architectural parameters and wrist position W0 tab-
ulated just before §4. Fig. 1, a), shows a 3R kinematic chain (3R robot) composed
four rigid bodies Σ0,Σ1,Σ2,Σ3 and three revolute joints J1,J2,J3: Joint Ji connects
Σi−1 and Σi. The axis of joint Ji is denoted by gi, i = 1,2,3. Σ0 and Σ3 are usually
called base (FF) and end-effector (EE) of the robot. In Fig. 2, the “skeleton” of the
robot is revealed: N and O are the pedal points on the common perpendicular of
g1 and g2. Analogously P and Q are the pedal points on the common perpendic-
ular of g2 and g3. Robot geometry is defined by Denavit-Hartenberg parameters:
ai and αi denote the shortest distance and the angle between the axes gi and gi+1,
i = 1,2 and d2 is the distance of the two pedal points O and P on g2. With frames
S0 = {N,e0x,e0y,e0z} and S3 = {Q,e3x,e3y,e3z} on (FF) and (EE) shown in Fig. 2,
the direct kinematics (DK) of (EE) motion is described by[

1
x0

]
= Rz(u1) ·C1 ·Rz(u2) ·C2 ·Rz(u3) ·

[
1
x3

]
(1)

where ui denote the joint angles, x0 = [x0,y0,z0]> and x3 = [x3,y3,z3]> are the po-
sition vectors of a point X ∈ Σ3 w.r.t. the coordinate systems S0 and S3. For the
definition of the 4×4-matrices Rz(ui), Ci see [3].
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Fig. 1 a) 3R chain in its home position b) Four solutions for the IK
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Fig. 2 The geometric skeleton of the 3R chain with local coordinate systems, the circles k and l
and a section of the cyclid Φ .

This kinematic chain represents half of a serial 6R wrist partitioned robot where the
last three axes g4,g5,g6 contain wrist center point W ∈ Σ3. The inverse kinematics
(IK) of such a 6R robot can be split into

• the wrist center positioning problem (WP) to find joint angles u1,u2,u3 to place
the wrist center W on a given point W0 ∈ Σ0 and

• finding three remaining angles u4,u5,u6 according to the given orientation; only
a quadratic problem.

3 Geometric solution of (WP)

Assume that g2,g3 are skew lines, i.e., a2 6= 0, sinα2 6= 0. The special cases where
g2,g3 either intersect or are parallel will be treated separately. To solve, consider
Σ1 is fixed, with respect to the observer, and introduce a third coordinate system
S := {O;ex,ey,ez} attached to Σ1 as shown in Fig. 2. Motion Σ0/Σ1 is pure rotation
about axis g1 and angle −u1, given by[

1
x

]
= C−1

1 ·Rz(−u1) ·
[

1
x0

]
(2)

where x = [x,y,z]> and x0 = [x0,y0,z0]> denote the position vector of a point w.r.t.
S and S0, respectively. Wrist center target point W0 ∈ Σ0 sweeps a circle l in Σ1
centered on L ∈ g1, where L is the pedal point of W0 w.r.t g1. Parametrization of l
with u1 is obtained by substituting the position vector x0 = w0 = [w1,w2,w3]> of
W0 into (Eq. 2):
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y
z

 =

 −a1
w3 sinα1
w3 cosα1

+ cosu1

 w1
w2 cosα1
−w2 sinα1

+ sinu1

 w2
−w1 cosα1
w1 sinα1

 (3)

On the other hand the motion Σ3/Σ1 is the result of the two rotations of a 2R dyad
with axes g2 and g3. The two parameters are the joint angles u2,u3. The analytic
description of this motion is[

1
x

]
= Rz(u2) ·C2 ·Rz(u3) ·

[
1
x3

]
. (4)

Wrist center W ∈ Σ3 w.r.t. the rotation Σ3/Σ2 moves on a circle k ⊂ Σ2 with radius
s = dist(W,g3) centered in the pedal point K of W w.r.t. g3. Together with rotation
about g2 through angle u2, the circle k generates Φ a surface of revolution called a
cyclid. The parametrization of Φ w.r.t. S is obtained by substitution of the position
vector x3 = w3 = [s,0,b]> of W in (Eq. 4): x

y
z

 =

 cosu2(a2 + scosu3)− sinu2(−bsinα2 + scosα2 sinu3)
sinu2(a2 + scosu3)+ cosu2(−bsinα2 + scosα2 sinu3)

d2 +bcosα2 + ssinα2 sinu3

 (5)

Herein b denotes the (oriented) distance of Q and K.
Hence, one sees that:

Placing the wrist center W on the target point W0 means finding the intersec-
tion points of circle l and cyclid Φ .

To find these intersection points one uses an equation for Φ . By squaring and adding
the first two lines of (Eq. 5)

x2 + y2 = (a2 + scosu3)2 +(−bsinα2 + scosα2 sinu3)2 (6)

is obtained. The third line yields

sinu3 =
z−d2−bcosα2

ssinα2
. (7)

Substitution of (Eq. 7) in (Eq. 6) produces the equation of Φ :[
(x2 + y2 + z2−2d2z−a2

2 +d2
2 −b2− s2)sinα2

]2
+[

(z−d2−bcosα2)2− s2 sin2
α2
]

4a2
2 = 0 (8)

Hence Φ is algebraic of degree 4 and doubly contains the absolute conic k∞ : (x2 +
y2 + z2)2 = 0. To find the intersection points of l and Φ the parametrization (Eq. 3)
of l is substituted into (Eq. 8). Manipulation results in an equation in terms of only
1,cosu1,sinu1,cos2 u1,sin2 u1 and cosu1 · sinu1. It can be written as
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[1,cosu1,sinu1] ·C ·

 1
cosu1
sinu1

 = 0 (9)

with a symmetric 3×3-matrix C = [c]i j. The constant entries of C are

c11 = e2 sin2
α2 +4a2

2 f

c12 = 2
[
esin2

α2(d2w2 sinα1−a1w1)−2a2
2w2 sinα1(w3 cosα1−d2−bcosα2)

]
c13 = 2

[
−esin2

α2(d2w1 sinα1 +a1w2)+2a2
2w1 sinα1(w3 cosα1−d2−bcosα2)

]
c22 = 4

[
sin2

α2 · (d2w2 sinα1−a1w1)2 +a2
2w2

2 sin2
α1
]

c23 = 4
[
−sin2

α2 · (d2w1 sinα1 +a1w2)(d2w2 sinα1−a1w1)−a2
2w1w2 sin2

α1
]

c33 = 4
[
sin2

α2 · (d2w1 sinα1 +a1w2)2 +a2
2w2

1 sin2
α1
]

where

e = a2
1−a2

2 +d2
2 −b2− s2 +w2

1 +w2
2 +w2

3−2d2w3 cosα1

f = (w3 cosα1−d2−bcosα2)2− s2 sin2
α2

After half-angle substitution cosu1 = 1−τ2

1+τ2 , sinu1 = 2τ

1+τ2 and multiplication by the
denominator (1+ τ2)2 (Eq. 9) becomes

ρ(τ) = [1+ τ
2,1− τ

2,2τ] ·C ·
[

1+ τ2, 1− τ2, 2τ
]> = 0 (10)

i.e., a quartic polynomial in τ . The geometric reason for the algebraic degree four
of the resulting univariate ρ(τ) is that four of the eight intersection points of l and
Φ always fall into the absolute points I, I of l. Each of these two points has to be
counted twice since the absolute conic is a double curve on Φ . Each real solution τ∗

of (Eq. 10) yields a solution u∗1 for the first joint angle. By substitution of u1 = u∗1 in
(Eq. 3) we obtain the coordinates x∗,y∗,z∗ of the corresponding intersection point
of Φ and l. By means of (Eq. 7) we get

sinu∗3 =
z∗−d2−bcosα2

ssinα2
, cosu∗3 = ±

√
1− sinu∗23 (11)

Since a2 6= 0 (the axes g2 and g3 were assumed to be skew in the general case) the
sign of cosu∗3 is uniquely determined by (Eq. 6),

x∗2 + y∗2 = (a2 + scosu∗3)
2 +(−bsinα2 + scosα2 sinu∗3)

2

and so u∗3 is uniquely determined. After substitution of u3 = u∗3,x = x∗,y = y∗ into
the first two lines of (Eq. 5) one gets sinu∗2, cosu∗2 and thereby u∗2, uniquely:
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cosu∗2 =
x∗(a2 + scosu∗3)+ y∗(−bsinα2 + scosα2 sinu∗3)

x∗2 + y∗2

sinu∗2 =
y∗(a2 + scosu∗3)− x∗(−bsinα2 + scosα2 sinu∗3)

x∗2 + y∗2

When joint axes g2,g3 are, in general, skew (WP) has ≤ 4 real solutions. To
obtain the solution angle triples (u∗1,u

∗
2,u
∗
3)

• Determine the roots of a quartic univariate polynomial to get the first angle
u∗1.

• Then compute the corresponding other two angles u∗1,u
∗
2 by linear routines.

Architecture and the four poses shown in Fig. 1, b) were produced with the following
data. Below these appear matrices that contain the coordinates (x∗,y∗,z∗) of the four
points of intersection between circle and cyclid and the four corresponding joint
angle triples (u∗1,u

∗
2,u
∗
3). All angles are given in degrees.

a1 = 2.0,a2 = 3.5,α1 = 45,α2 = 60,d2 = 5.0,b = 3.4,s = 2.5,w0 = [3,3,7]>
x∗ y∗ z∗

2.2094 5.3245 4.5750
0.8782 2.7456 7.1539
−1.8043 1.9529 7.9466
−5.7428 3.5370 6.3625

 ,


u∗1 u∗2 u∗3

37.825 113.817 281.043
92.282 140.784 167.900

132.356 189.533 144.847
196.906 176.111 351.032



4 The case of intersecting joint axes g2 and g3

If g2 intersects g3 in the point P = Q then the surface generated by circle k by means
of rotation around g2 is a sphere Φ centered in P = Q and radius +

√
b2 + s2. The

equation of Φ follows immediately by setting a2 = 0 in (Eq. 8):

x2 + y2 + z2−2d2z+d2
2 −b2− s2 = 0 (12)

One may say, more precisely, that k generates only a strip on the sphere Φ which is
bounded by the two latitude circles with z-coordinates z = d2 +bcosα2∓ ssinα2.
As in the general case one has to determine the common points of the other cir-
cle l with Φ : Substitution of (Eq. 3) yields an equation in the terms 1,cosu1,sinu1
which can have at most two solutions for u1 in the interval [0,2π[ in accordance with
the fact that a circle intersects a sphere in at most two points. To obtain a polyno-
mial equation one can again apply half-angle substitution as before but the resulting
polynomial ρ = ρ(τ) is only of degree 2. Via (Eq. 3) one can again determine the
coordinates x∗,y∗,z∗ of the intersection point belonging to a solution u∗1 for the first
joint angle. A valid (WP) solution occurs only if this point lies within the mentioned
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strip region of Φ , i.e.,

d2 +bcosα2− ssinα2 ≤ z∗ ≤ d2 +bcosα2 + ssinα2.

In contrast to the general case the angle u∗3 corresponding to a solution u∗1 for the
first angle is no longer unique:
The sine of this angle is again given uniquely by means of (Eq. 11) but by having set
a2 = 0 (Eq. 6) determines cosine magnitude only. Hence, for any solution u∗1 there
are two possible angles u∗3 and ũ∗3 with u∗3 + ũ∗3 = π .
The angle u∗2 belonging to an already determined pair u∗1,u

∗
3 can again be computed

linearly as in the main case.

5 The case of parallel joint axes g2 and g3

This case is characterized by sinα2 = 0. The cyclid Φ degenerates to an annulus in
the plane

z = d2±b (13)

centered in M(0,0,d2±b), with “+” if α2 = 0 and “−” if α2 = π . The interior and
exterior radii of the ring are a2∓ s. Substitution of (Eq. 3) into (Eq. 13) yields the
condition

d2±b−w3 cosα1 + sinα1(w2 cosu1−w1 sinu1) = 0

which can again be transformed into a quadratic polynomial by means of half-angle
substitution giving at most two real solutions for u1 (intersection of a circle with a
plane).
A solution u∗1 is only valid if the corresponding point x∗,y∗,z∗ which is computed
via (Eq. 3) lies within the annulus, i.e., the inequality

a2− s≤
√

x∗2 + y∗2 ≤ a2 + s

must be fulfilled.
To determine the other joint angles u∗2,u

∗
3 that correspond to a valid solution of the

first angle u∗1 one substitutes x∗,y∗ into the first two lines of (Eq. 5) recalling that
α2 = 0,π:

x∗ = scos(u2±u3)+a2 cosu2, y∗ = ssin(u2±u3)+a2 sinu2

After squaring and adding we obtain the cosine of angle u3:

cosu3 =
x∗2 + y∗2−a2

2− s2

2a2s
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To each angle u∗1 there are two corresponding angles u∗3, ũ∗3 within the interval [0,2π[
with u∗3 + ũ∗3 = 2π . The angle u∗2 is again computed linearly, as in the general case.
Remark. If instead of g2,g3 the axes g1,g2 are intersecting or parallel, it is obvious
that one can again reduce (WP) to quadratic problems, by means of role reversal of
the circles k and l: Instead of letting k rotate around g2 and intersecting the surface
Φ with l one can alternately let l revolve about g2 and determine the intersection
points of the resulting surface Ψ with k.

If one of the axis pairs (g1,g2) or (g2,g3) is intersecting or parallel then (WP)
has again at most four solutions, but the solution angle triples (u∗1,u

∗
2,u
∗
3) can

be determined by solving quadratic equations.

6 Conclusion

An alternative solution to the inverse kinematic point positioning problem of a gen-
eral 3R chain was presented. A geometric approach showed that the problem is
equivalent to finding the intersection points of a special surface Φ (cyclid) with a
circle l. This fact clearly shows that where adjacent revolute joint axes are skew the
problem leads to a UVP of degree four. On the other hand, if two adjacent revolute
joint axes are intersecting or parallel the cyclid is replaced by a sphere or a plane,
which means that the resulting UVP is quadratic. Although these results are not new
the geometric formulation is novel and is believed to convey new insight. Up to four
real solutions are contained in the intersection of three easy to visualize surfaces. A
cyclid intersects a plane and sphere. The latter two make up the spatial circle.
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4. Husty M, Pfurner M, Schröcker H-P, Brunnthaler K (2007) Algebraic methods in mechanism

analysis and synthesis. Robotica 25:661–675.
5. Pfurner M (2009) Explicit algebraic solution of geometrically simple serial manipulators (ten-
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