
1. Introductional lecture (15 March 2011)

In this lecture we bring together some basic definitions and facts on continued fractions.
After several technical preliminary statements and discussions we prove convergency the-
orem for infinite ordinary continued fractions. Further we show existence and uniqueness
(odd and even continued fractions in rational case) of continued fractions for a given
number. Finally we formulate two theorems on approximation rates by convergents and
Lagrange theorem on periodic continued fractions and quadratic irrationalities. The most
part of the material is taken from the book by A. Ya. Khinchin “Continued Fractions”.

1.1. Euclidean algorithm. The story of continued fractions starts with an Euclidean
algorithm named after the Greek mathematician Euclid, who described it in his Elements
(Books VII and X). Actually the algorithm was known before Euclid, it was mentioned
in the Topics of Aristotle.

The task of the algorithm is to find the greatest common divisor for a pair of integers.
Let us describe the algorithm in a few words.

Consider two nonzero integers p and q, let us find their greatest common divisor (usually
denoted by gcd(p, q)). To do this we make several iterative steps. We describe them
inductively.

Step 1. Let us find integer numbers a0 and r1 where q > r1 ≥ 0 such that

p = a0q + r1.

Step k. Suppose we have completed k− 1 steps and get the integers ak−2 and rk−1. Let
us find ak−1 and rk where rk−1 > rk ≥ 0 such that

rk−2 = ak−1rk−1 + rk.

The algorithm stops at Step n when rn = 0. Since the sequence (rk) is decreasing
sequence of positive integers, the algorithm always stops.

1.2. Definition of a continued fraction. In order to give a definition of a continued
fraction we slightly modify the Euclidean algorithm. We start with a rational number α.
On each step we define a pair of integer numbers (ak−1, rk).

Step 1. Let us subtract the integer part bαc and invert the remainder, i.e.,

α = bαc+
1

1/(α− bαc) .

Denote a0 = bαc, and continue with the reminding part r1 = 1/(α− a0).
Step k. Suppose we have completed k− 1 steps and get the number ak−2 and rk−1. Let

us find ak−1 and rk

rk−1 = brk−1c+
1

1/(rk−1 − brk−1c) .
According to this expression we denote ak−1 = bαc and rk = 1/(rk−1 − ak−1).
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The algorithm stops at Step n when rn = 0.
Let ri = pi/qi with positive integers pi, qi for i ≥ 1. Then for any k ≥ 1 we have

pk+1

qk+1

= rk+1 =
1

rk − brkc =
1

pk

qk
− bpk/qkc =

qk

pk − qkbpk/qkc .

Since rk > 1, its denominator is less than its numerator (i.e., qk+1 < qk). Hence the
sequence of denominators qk decreases with growth of k. Therefore, the algorithm stops
in a finite number of steps.

The described decomposition of a rational number α can be written as follows.

(1) a0 +
1

a1 +
1

a2 +
1

. . . +
1

an

This expression is considered as a continued fraction of α.

Remark 1.1. In general there is no restriction to the elements of continued fractions, they
can be any real numbers. To avoid the annoying consideration of different cases of zeroes
and infinities we propose to add an element ∞ to the field of real numbers R and define
the following operations:

∞+ a = a +∞ = ∞,
1

0
= ∞,

1

∞ = 0.

Denote the resulting set by R.

Definition 1.2. Let a0, . . . , an be arbitrary real numbers. Expression (1) is called a finite
continued fraction, and denoted by [a0; a1 : . . . : an]. It corresponds to some α in R. The
numbers a0, . . . , an are the elements of this continued fraction.

Definition 1.3. A continued fraction is odd (even) if it has odd (even) number of elements.

Notice that the term continued fractions was used for the first time by John Wallis in
1695.

Example 1.4. Let us study one example:

9

7
= 1 +

1(
7
2

) = 1 +
1

3 + 1
2

So we get the continued fraction [1; 3 : 2] .

Remark 1.5. The Euclidean algorithm actually generates the elements of a continued
fraction. We always have (see the previous subsection)

p

q
= [a0; a1 : . . . : an].
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Definition 1.6. An infinite continued fraction with an infinite sequence of elements
a0, a1, . . . is the following limit (in case of existence)

lim
k→∞

[a0; a1 : . . . : ak].

We denote it by [a0; a1 : . . .].

The number [a0; a1 : . . . : ak−1] is called the k-convergent (or just convergent) to the
finite or infinite continued fraction [a0; a1 : . . .].

Definition 1.7. A continued fraction (finite or infinite) is called an ordinary continued
fraction if its zero element is integer and the rest are positive integers.

1.3. Convergence of infinite ordinary continued fractions. In this subsection we
show that a sequence of k-convergents of any infinite ordinary continued fraction converges
to some real number.

There exists a unique pair of polynomials Pk and Qk in variables x0, . . . , xk with non-
negative integer coefficients such that

Pk(x0, . . . , xk)

Qk(x0, . . . , xk)
= [x0; x1 : . . . : xk], and Pk(0, . . . , 0) + Qk(0, . . . , 0) = 1.

Actually, the first condition defines the polynomials up to a multiplicative, so the second
condition is a necessary normalization condition.

Example 1.8. For instance we have

P0(x0) = x0, Q0(x0) = 1;
P1(x0, x1) = x0x1 + 1, Q1(x0, x1) = x1;
P2(x0, x1, x2) = x0x1x2 + x2 + x0, Q2(x0, x1, x2) = x1x2 + 1;
. . .

Consider a finite (or infinite) continued fraction [a0; a1 : . . . : an] with n ≥ k (or
[a0; a1 : . . .] respectively). We denote

pk = Pk(a0, . . . , ak) and qk = Qk(a0, . . . , ak);

As we show later in Proposition 1.10 the integers pk and qk are relatively prime for any
k. For the next several propositions we need an additional notation.

p̂k = Pk−1(a1, . . . , ak) and q̂k = Qk−1(a1, . . . , ak).

We start with the following lemma.

Lemma 1.9. The following holds {
pk = a0p̂k + q̂k

qk = p̂k
.

Proof. Since
p̂k

q̂k

= [a1; a2 : . . . : ak].
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we get
pk

qk

= a0 +
1

p̂k/q̂k

=
a0p̂k + q̂k

p̂k

.

Therefore, {
pk = λ(a0p̂k + q̂k)
qk = λp̂k

.

Now we rewrite the second condition for polynomials Pk and Qk:

1 = Pk(0, . . . , 0)+Qk(0, . . . , 0) = λ(0Pk−1(0, . . . , 0)+Qk−1(0, . . . , 0))+λPk−1(0, . . . , 0) = λ.

Therefore, λ = 1. ¤
Proposition 1.10. Let [a0; a1 : . . . : an] be a continued fraction with integer elements,
then the corresponding integers pk and qk are relatively prime.

Proof. We prove the statement by the induction in k.
It is clear that p0 = a0 and q0 = 1 are relatively prime.
Suppose that the statement holds for k−1. Then p̂k and q̂k are relatively prime by the

induction assumption. Now the statement holds directly from the equalities of Lemma 1.9.
¤

Proposition 1.11. For any integer k we get{
pk = akpk−1 + pk−2

qk = akqk−1 + qk−2
.

Proof. We prove the statement by induction on k.
For k = 2 the statement holds since

p0

q0

=
a0

1
and

p1

q1

=
a0a1 + 1

a1

and, therefore,
p2

q2

=
a2 + a0a1a2 + a0

a1a2 + 1
=

a2p1 + p0

a2q1 + q0

.

Suppose the statement holds for k − 1 let us prove for k.

pk

qk

= a0 +
1

p̂k/q̂k

= a0 +
1

akp̂k−1+p̂k−2

ak q̂k−1+q̂k−2

=
a0(akp̂k−1 + p̂k−2) + akq̂k−1 + q̂k−2

akp̂k−1 + p̂k−2

=
ak(a0p̂k−1 + q̂k−1) + (a0p̂k−2 + q̂k−2)

akp̂k−1 + p̂k−2

=
akpk−1 + pk−2

akqk−1 + qk−2

.

(The last equality holds by Lemma 1.9.) Therefore, the relations of the system hold. ¤
Denote by Fn the Fibonacci numbers (defined by F1 = F2 = 1, and Fn = Fn−1 + Fn−2).

Corollary 1.12. For ordinary continued fractions the following estimates hold

|pk| ≥ Fk and qk ≥ Fk+1
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Proof. We prove the statement by induction in k. Direct calculations show that

|p0| ≥ 0, |p1| ≥ 1, and |p2| ≥ 1,
|q0| ≥ 1, |q1| ≥ 1, and |q2| ≥ 2.

Let the statement holds for k − 2 and k − 1, we prove it for k. Notice that qk are all
positive and pk are either all negative, or all non-negative. We apply Proposition 1.11

|pk| = ak|pk−1|+ |pk−2| ≥ 1 · Fk−1 + Fk−2 = Fk, and
qk = akqk−1 + qk−2 ≥ 1 · Fk + Fk−1 = Fk+1

This concludes the proof. ¤

Proposition 1.13. For any k ≥ 1 the following holds

pk−1

qk−1

− pk

qk

=
(−1)k

qk−1qk

.

Proof. Let us multiply both sides by qk−1qk, we get

pk−1qk − pkqk−1 = (−1)k.

We prove this by induction in k.
For k = 1 we have

p0q1 − p1q0 = a1a0 − (a1a0 + 1) = −1.

Suppose the statement holds for k− 1 let us prove it for k. By Proposition 1.11 we get

pk−1qk − pkqk−1 = pk−1(akqk−1 + qk−2)− (akpk−1 + pk−2)qk−1

= −(pk−2qk−1 − pk−1qk−2) = (−1)k.

Therefore, the statement holds. ¤

Now we are ready to proof the following fundamental theorem.

Theorem 1.14. For any integer a0 and positive integers ak the ordinary infinite continued
fraction [a0; a1 : . . .] exists (i.e., the corresponding sequence

(
pn

qn

)
converges).

Proof. Notice that from Proposition 1.13 and Corollary 1.12 it follows that
∣∣∣∣
pk−1

qk−1

− pk

qk

∣∣∣∣ ≤
1

FkFk+1

.

Since the sum
∞∑

k=1

1

FkFk+1

converges (we leave this statement as an exercise for the reader), the sequence
(

pk

qk

)
is a

Cauchy sequence. Therefore,
(

pk

qk

)
converges. ¤
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1.4. Existence and uniqueness of ordinary continued fraction for a given num-
ber. In the next theorem we show in particular that the limit for an infinite ordinary
continued fraction always exists.

Proposition 1.15. Any rational number has a unique odd and even ordinary continued
fractions.
Any irrational number has a unique infinite ordinary continued fraction.

For instance 9
7

= [1; 3 : 2] = [1; 3 : 1 : 1] and π = [3; 7 : 15 : 1 : 292 : 1 : 1 : 1 : 2 : . . .].

Proof. Existence. In Subsection 1.2 we have shown how to construct an ordinary con-
tinued fraction [a0; a1 : . . . an] for a rational number α. Notice that if α is rational but
not integer then an > 1 and, therefore,

α = [a0; a1 : . . . : an] = [a0; a1 : . . . : an−1 : 1].

One of these continued fractions is odd and the other is even. For integer α we always
get α = [α] = [α−1; 1].

In the case of irrational number α the algorithm works infinite time and generate the
ordinary continued fraction α′ = [a0; a1 : a2 : . . .] and the sequence of remainders rk > 1,
such that

α = [a0; a1 : . . . : ak−1 : rk].

Let us show that α = α′. From Proposition 1.11 for [a0; a1 : . . . : ak−1 : rk] and
[a0; a1 : . . . : ak−1 : . . .] we have

α =
pn−1rn + pn−2

qn−1rn + qn−2

and
pn

qn

=
pn−1an + pn−2

qn−1an + qn−2

.

Using these expressions and the fact that an = brnc we have
∣∣∣∣α−

pn

qn

∣∣∣∣ =

∣∣∣∣
(pn−1qn−2 − pn−2qn−1)(rn − an)

(qn−1rn + qn−2)(qn−1an + qn−2)

∣∣∣∣ <

∣∣∣∣
1

(qn−1rn + qn−2)(qn−1an + qn−2)

∣∣∣∣

<
1

qn−1qn

≤ 1

FnFn+1

.

The last inequality follows from Corollary 1.12.
Therefore, the sequence

(
pn

qn

)
converges to α and hence α = α′.

Uniqueness. Consider a rational α. Let us prove the uniqueness of a finite ordinary
continued fraction α = [a0; a1 : . . . : an] where an 6= 1. We prove this by reductio ad
absurdum.

Suppose

α = [a0; a1 : . . . : ak : ak+1 : . . . : an] = [a0; a1 : . . . : ak : a′k+1 : . . . : a′m],

where ak+1 6= a′k+1. Then we have

α =
pkrk+1 + pk−1

qkrk+1 + qk−1

=
p′kr

′
k+1 + p′k−1

q′kr
′
k+1 + q′k−1

=
pkr

′
k+1 + pk−1

qkr′k+1 + qk−1

.
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Therefore, rk+1 = r′k+1, and thus ak+1 = brk+1c = br′k+1c = a′k+1. We come to the
contradiction.

The statement on uniqueness of continued fractions for irrational numbers repeats the
case of rational numbers. ¤

We conclude this subsection with a statement on a behavior of the sequence of conver-
gents.

Proposition 1.16. (i) The sequence (p2k/q2k) is increasing, and the sequence (p2k+1/q2k+1)
is decreasing.
(ii) For any real α and a nonnegative integer k we have

p2k

q2k

≤ α and
p2k+1

q2k+1

≥ α,

the equality holds only for the last convergent in case of rational α.

Proof. (i). By Proposition 1.11 we have

pm−2

qm−2

− pm

qm

=

(
pm−2

qm−2

− pm−1

qm−1

)
−

(
pm−1

qm−1

− pm

qm

)
=

(−1)m−1

qm−1

(
1

qm−2

− 1

qm

)
.

Since the sequence of the denominators (qk) is increasing (by Proposition 1.13), we have
that pm−2/qm−2 is greater that pm/qm for all even m and it is smaller for all odd m. This
concludes the proof of (i).

(ii). The sequence of even (odd) convergents is increasing (decreasing) and tends to α
in irrational case or end up with some pn/qn = α in rational case. This implies the second
statement of the proposition. ¤

1.5. Continued fractions and best approximations. We say that a rational number
a/b (where b > 0) is a best approximation of a real number α if for any other fraction c/d
with 0 < d ≤ b we get

(2)
∣∣∣α− c

d

∣∣∣ ≥
∣∣∣α− a

b

∣∣∣ .

Theorem 1.17. Consider a real number α. Let [a0; a1 : . . .] (or [a0; a1 : . . . : an]) be an
ordinary infinite (finite) continued fraction for α. Then the set of best approximations con-
sists of convergents pk/qk = [a0; a1 : . . . : ak] where k = 1, 2, . . . (In case of finite continued
fraction we additionally have for [a0; a1 : . . . : an−1 : an−1] as a best approximation). ¤

Now we say a few words about the rate of approximations.

Theorem 1.18. Consider an inequality∣∣∣∣α−
p

q

∣∣∣∣ <
c

q2

Let c ≥ 1√
5
. Then for any α the inequality has an infinite number of integer solutions

(p, q). ¤
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Proposition 1.19. Let α be the golden ratio, i.e.,

α =
1 +

√
5

2
= [1; 1 : 1 : 1 : 1 : . . .]

If c < 1√
5

then Equation 2 has only finitely many solutions.

Denote the golden ration by θ and its conjugate (1−√5)/2 by θ.

Proof. First of all, let us show that it is enough to check only all the convergents pk/qk.
From Theorem 1.17 it follows that best approximations are convergents to a number. Let
p/q be a rational such that qk ≤ q < qk+1. Therefore,

q2
∣∣∣α− p

q

∣∣∣ > q′2
∣∣∣α− p′

q′

∣∣∣ ≥ q2
∣∣∣α− p′

q′

∣∣∣.

Hence if p/q is a solution of Equation 2 then pk/qk is a solution of Equation 2 as well.
Therefore, if there are infinitely many solutions of Equation 2 then there are infinitely
many convergents to golden ration among them.

Secondly, we prove the statement for the convergents. From Proposition 1.11 it follows
that the k-convergent to the golden ratio equals to Fk+1/Fk. Recall a general formula for
Fibonacci numbers via golden ration and its conjugate:

Fk =
θk − θ

k

√
5

.

We have
∣∣∣∣θ−

pk−1

qk−1

∣∣∣∣ =
∣∣∣θ− Fk+1

Fk

∣∣∣∣ =

∣∣∣∣θ−
θk+1 − θ

k+1

θk − θ
k

∣∣∣∣ =

∣∣∣∣
θ

k

θk − θ
k

∣∣∣∣ =

∣∣∣∣
1− θ

2k

(
θk − θ

k)2

∣∣∣∣ =
1√
5F 2

k

∣∣1−θ
2k∣∣.

Since |θ| < 1, we have
∣∣1− θ

2k∣∣ = 1 + o(1) and hence
∣∣∣∣θ −

pk−1

qk−1

∣∣∣∣ =
1√

5q2
k−1

+ o
( 1

q2
k−1

)
.

This implies the statement for convergents and concludes the proof of Proposition 1.19. ¤

1.6. Periodic continued fractions and quadratic irrationalities. A continued frac-
tion [a0; a1 : . . .] is called periodic if there exists positive integers k0 and h such that for
any k > k0

ak+h = ak.

we denote it by [a0; a1 : . . . : ak0 : (ak0+1 : . . . : ak0+h)].

Theorem 1.20. (Lagrange.) Any periodic ordinary continued fraction is a quadratic

irrationality (i.e.,
a + b

√
c

d
for some integer a, b, c, and d where b 6= 0, c > 1, d > 0,

and c is square free). The inverse is also true: any quadratic irrationality has a periodic
ordinary continued fraction.
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Lemma 1.21. For any quadratic irrationality ξ there exists an SL(2,Z) operator such
that one of its eigenvectors is (1, ξ).

Proof. Let ξ be a root of the equation c2x
2 + c1x + c0 = 0 with integer coefficients A, B,

C. Consider an arbitrary operator

A =

(
a11 a12

a21 a22

)

Its eigenvectors are
(

1,
a22 − a11 ±

√
(a22 − a11)2 + 4a12a21

2a12

)
.

Notice that ξ and its conjugate roots are of the form

−c1 ±
√

c2
1 − 4c0c2

2c2

.

So the operator A has a root (1, ξ) if the following system satisfied




nc0 = −a21

nc1 = a11 − a22

nc2 = a12

for some n 6= 0.
Let us find an operator of SL(2,Z) satisfying this system for some integer n. Since n

is integer, the coefficients a12 and a21 are integers as well. Since det A = 1 we have

det A = a11a22 − a12a21 = a11(na11 − c1) + n2c0c2 = 1.

Therefore,

a11 =
nc1 ±

√
n2(c2

1 − 4c0c2)− 4

2
.

The coefficient a11 is integer if and only if there exist an integer n satisfying

m2 = n2(c2
1 − 4c0c2)− 4.

Denote D = c2
1 − 4c0c2, m′ = m/2, and n′ = n/2 and rewrite the equation

m′2 −Dn′2 = 1.

So, we end up with Pell’s equation. Since ξ is irrational the discriminant D = c2
1 − 4c0c2

is not a square of some integer (since ξ is real, D ≥ 0). Hence, by Theorem ??? it has an
integer solution (m′

0, n
′
0) with n′0 6= 0. Hence the operator

(
m′

0 − n′0c1 2n′0c2

−2n′0c0 m′
0 + n′0c1

)

has integer elements and unit determinant. Therefore, it is in SL(2,Z). ¤
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Proposition 1.22. Let α1, α2, α3 be distinct numbers and α1 be irrational. Consider
two angles defined by pairs of lines (y = α1x, y = α2x) and (y = α1x, y = α3x) lying in
the half-plane x > 0. The LLS-sequences of these two angles coincide from some element
(up to a sequence shift).

Proof. ... ¤
Theorem 1.23. For any integer d which is not a square of an integer Pell’s equation

m2 − dn2 = 1

has a solution (m0, n0) where n0 6= 0.

Proof. By Theorem 1.18 there are infinitely many integer solutions of the inequality∣∣∣∣
√

d− p

q

∣∣∣∣ <
1√
5q2

.

For these points we have

|q2d− p2| = |q
√

d− p||q
√

d + p| =
∣∣∣
√

d− p

q

∣∣∣
∣∣∣2
√

d +
(√

d− p

q

)∣∣∣q2 <
2
√

d + 1√
5

.

Therefore, there exists an integer k such that the equation

q2d− p2 = c

has infinitely many integer solutions. Choose among these solutions (m1, n1) and (m2, n2)
such that

m1 ≡ m2(mod c) and n1 ≡ n2(mod c).

(This is possible since the amount of distinct reminders pairs is finite.)
Now take

m̂ =
m1m2 − dn1n2

c
and n̂ =

m2n1 − dm1n2

c
.

Notice that

m̂ ≡ m2
1 − dn2

1 = c ≡ 0(mod c) and n̂ ≡ m1n1 −m1n1 = 0(mod c).

Hence the point (m̂, n̂) is integer. Now let us consider

m̂2 − dn̂2 = (m̂−
√

dn̂)(m̂ +
√

dn̂) =
m1 −

√
dn1

m2 −
√

dn2

· m1 +
√

dn1

m2 +
√

dn2

=
m2

1 − dn2
1

m2
2 − dn2

2

=
c

c
= 1.

This concludes the proof. ¤

Proof of Lagrange theorem. First, let us show that any periodic continued fraction is a
quadratic irrationality. Since the continued fraction is infinite the corresponding number
is irrational.

Suppose the periodic continued fraction for ξ does not have a pre-period, i.e.,

ξ = [(a0 : a1 : . . . : an)]
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then

ξ = [a0; a1 : . . . : an : ξ] =
pnξ + pn−1

qnξ + qn−1

.

(The last equality holds by Theorem 1.11.) Notice that the denominator qn−1ξ + qn−2 is
nonzero, since ξ is irrational. Therefore ξ satisfy

qn−1ξ
2 + (qn−1 − pn−1)ξ − pn−2 = 0.

Hence ξ is a quadratic irrationality.
Suppose now that

ξ = [a0; a1 : . . . : an : (an+1 : an+2 : . . . : an+m)]

Denote

ξ̂ = [(an+1 : an+2 : . . . : an+m)].

Then by Theorem 1.11 we have

ξ = [a0; a1 : . . . : an : ξ̂] =
pnξ̂ + pn−1

qnξ̂ + qn−1

.

We have already showed that ξ̂ is a quadratic irrationality, hence ξ is a quadratic irra-
tionality as well.

Secondly, we prove that any quadratic irrationality is a periodic continued fraction. Let
ξ > 1 be a quadratic irrationality. By Lemma 1.21 there exists an SL(2,Z)-operator A
with an eigenvector (1, ξ). By Theorem ??? the geometric continued fraction of A has
periodic LLS-sequence. The LLS-sequence for the angle generated by two vectors (1, 0)
and (1, ξ) is one-Side infinite and by Lemma 1.22 from some element it coincides (up to a
shift) with the LLS-sequence for operator A. Hence, the LLS-sequence for A is periodic
and, therefore, by Theorem ??? the continued fraction for ξ is periodic.

Suppose now, ξ < 1. The number ξ̂ = ξ−bξc+1 is quadratic and greater than 1, and

hence it is periodic by the above. The continued fractions for ξ and ξ̂ are distinct only in
the first element. Hence the continued fraction for ξ is periodic as well. ¤

Exercises

[1] Show that the sum
∞∑

k=1

1
FkFk+1

converges.

[2] Prove that for any k ≥ 2 we get

pk−2

qk−2
− pk

qk
=

(−1)k−1ak

qkqk−2
.

[3] Prove that the sequence
(p2k+1

q2k+1

)
is decreasing and the sequence

(
p2k

q2k

)
is increasing.

[4] Prove that for any k ≥ 1 we get
qk

qk−1
= [ak; ak−1 : . . . , a1].



12

[5] Prove that for any k ≥ 0 we get

1
qk(qk+1)

≥
∣∣∣∣α−

pk

qk

∣∣∣∣ >
1

qk(qk+1 + qk)
.

[6] Prove the statement of Example 1.19.
[7] Prove that a)

√
2 = [1; (2)];

b) exp(1) = [2; 1 : 2 : 1 : 1 : 4 : 1 : 1 : 6 : 1 : 1 : 8 : 1 : 1 : 10 : . . .].
[8] Consider an irrational number α.

a) Suppose that we know that α ≈ 4, 17. Is it true that 417
100 is its best approximation?

b) Find the set of all real numbers for which the rational number [1; 2 : 3 : 4] is one of best
approximations.

[9] Construct an infinite continued fraction which has exactly two limit points: 1 and −1.
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