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Abstract. In this paper we study necessary conditions of flexibility for semidiscrete
surfaces. For 2-ribbon semidiscrete surfaces we prove their one-parametric finite flexibil-
ity. In particular we write down a system of differential equations describing flexions in
the case of existence. Further we find infinitesimal criterions of 3-ribbon flexibility. Fi-
nally, we discuss the relation between general semidiscrete surface flexibility and 3-ribbon
flexibility.
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Introduction

A mapping f : R × Z → R3, where the dependence on the continuous parameter is
smooth, is called a semidiscrete surface. Let us connect f(t, z) with f(t, z+1) by segments
for all possible pares (t, z). The resulting piecewise smooth surface is a piecewise ruled
surface. In this paper we study infinitesimal and higher order flexibility conditions for such
semidiscrete surfaces. By flexions of a semidiscrete surface f we understand deformations
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that isometrically deform corresponding ruled surfaces and in addition that preserve all
line segments connecting f(t, z) with f(t, z+1).

Many questions on discrete polyhedral surfaces have their origins in classical theory of
smooth surfaces. Flexibility is not an exception from this rule. The general theory of
flexibility of surfaces and polyhedra is discussed in the overview [11] by I. Kh. Sabitov.

In 1890 [1] L. Bianchi introduced a necessary and sufficient condition for the existence
of isometric deformations of a surface preserving some conjugate system (i.e., two inde-
pendent smooth fields of directions tangent to the surface), see also in [5]. Such surfaces
can be understood as certain limits of semidiscrete surfaces.

On the other hand, semidiscrete surfaces are themselves the limits of certain polygonal
surfaces (or meshes). For the discrete case of flexible meshes much is now known. We
refer the reader to [2], [9], [7], and [6] for some recent results in this area. For general
relations to the classical case see a recent book [3] by A. I. Bobenko and Yu. B. Suris. It
is interesting to notice that the flexibility conditions in the smooth case and the discrete
case are of a different nature. Currently there is no clear description of relations between
them in terms of limits.

The place of the study of semidiscrete surfaces is between the classical and the discrete
cases. Main concepts of semidiscrete theory are described by J. Wallner in [12], and [13].
Some problems related to isothermic semidiscrete surfaces are studied by C. Müller in [8].

We investigate necessary conditions for existence of isometric deformations of semidis-
crete surfaces. To avoid pathological behavior related to noncompactness of semidiscrete
surfaces we restrict ourselves to compact subsets of the following type. An n-ribbon surface
is a mapping

f : [a, b]× {0, . . . , n} → R3, (i, t) 7→ fi(t).

We also use the notion

∆fi(t) = fi+1(t)− fi(t).

While working with a rather abstract semidiscrete or n-ribbon surface f we keep in
mind the two-dimensional piecewise-ruled surface associated to it (see Fig. 1).

In present paper we prove that any 2-ribbon surface (as a ruled surface) is flexible and
has one degree of freedom in the generic case (Theorem 1.15). This is quite surprising
since generic 1-ribbon surfaces have infinitely many degrees of freedom, see, for instance,
in [10], Theorem 5.3.10. We also find a system of differential equations for the deformation
of 2-ribbon surfaces (System A and Corollary 1.8). In contrast to that, a generic n-ribbon
surface is rigid for n ≥ 3. For the case n = 3 we prove the following statement (see
Theorem 2.7 and Corollary 2.9).

Infinitesimal flexibility condition.
A 3-ribbon surface is infinitesimally flexible if and only if the following condition holds:

Λ̇ = (H2 −H1)Λ,
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Figure 1. A 3-ribbon surface.

where

Λ =

(
ḟ1, f̈1, ∆f0

)
(
ḟ2, f̈2, ∆f2

)
(
ḟ2, ∆f1, ∆f2

)2

(
ḟ1, ∆f0, ∆f1

)2 ,

and

Hi(t) =
(ḟi, ∆ḟi−1, ∆fi) + (ḟi, ∆fi−1, ∆ḟi)

(ḟi, ∆fi−1, ∆fi)
, i = 1, 2.

Remark. Throughout this paper we denote the derivative with respect to variable t by
the dot symbol.

Having this condition, we also show how to construct inductively the variational isomet-
ric conditions of higher orders. Finally, we show that an n-ribbon surface is infinitesimally
or finitely flexible if and only if all its 3-ribbon subsurfaces are infinitesimally or finitely
flexible (see Theorems 2.13 and 2.14). We say a few words in the case of developable
semidiscrete surfaces whose flexions have additional surprising properties.

Organization of the paper. In Section 1 we discuss flexibility of 2-ribbon surfaces.
We study infinitesimal flexibility questions for 2-ribbon surfaces in Subsections 1.2 and 1.3.
In Subsection 1.2 we give a system of differential equations for infinitesimal flexions, prove
the existence of nonzero solutions, and show that all the solutions are proportional to each
other. In Subsection 1.3 we define the variational operator of infinitesimal flexion which is
studied further in the context of finite flexibility for 2-ribbon surfaces. In Subsection 1.4 we
prove that a 2-ribbon surface is finitely flexible and has one degree of freedom if in general
position. In Section 2 we work with n-ribbon surfaces. Subsection 2.2 gives infinitesimal
flexibility conditions for 3-ribbon surfaces. Subsection 2.3 studies higher order variational
conditions for 3-ribbon surfaces. Finally, Subsection 2.4 shows the relations between
flexibility of n-ribbon surfaces and infinitesimal and flexibility of 3-ribbon subsurfaces
contained in it (in both infinitesimal and finite cases). We conclude the paper with
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flexibility of developable semidiscrete surfaces in Section 3. In this case flexions have
additional geometric properties.

Necessary notions and definitions. Within this paper we traditionally consider t
as a smooth argument of a semidiscrete surface f . The time parameter for deformations
is λ.

A perturbation of a semidiscrete (n-ribbon) surface is a smooth curve γ(λ) in the space
of all sufficiently smooth semidiscrete surfaces. We assume that the curve is parameterized
by λ ∈ [0, ε] for some positive ε such that γ(0) = f .

Denote by Dγf the infinitesimal perturbation of a semidiscrete (n-ribbon) surface f

along the curve γ, i. e. the tangent vector ∂γ
∂λ

∣∣
λ=0

.

We say that a perturbation is a flexion if it does not change the inner geometry of the
surface obtained by joining all the pairs fi(t) and fi+1(t) by straight segments. In the
case of semidiscrete (n-ribbon) surfaces a surface is flexible if the the following quantities
are preserved by the perturbation:

|ḟi|, |∆fi|, 〈ḟi, ∆fi−1〉, 〈ḟi, ∆fi〉, and 〈ḟi, ḟi+1〉

(for all possible i and t in the case of an n-ribbon surface).
We say that an infinitesimal perturbation is an infinitesimal flexion if it does not change

the inner geometry of the surface infinitesimally. In other words, the first derivatives of
the quantities listed above are all equal to zero.

1. Finite flexibility of 2-ribbon surfaces

In this section we describe flexions of 2-ribbon surfaces. Such surfaces are defined by
three curves f0, f1, and f2. Our main goal here is to prove under some natural genericity
assumptions that any 2-ribbon surface is flexible and has one degree of freedom. Our
first point is to describe the system of differential equations (System A) that determines
infinitesimal flexions corresponding to finite flexions and find solutions to this system (see
Subsections 1.1 and 1.2). Further via solutions of System A we define the variational
operator of infinitesimal flexion V (in Subsection 1.3). Finally, to show finite flexibility of
2-ribbon surfaces we study Lipschitz properties for V (in Subsection 1.4).

1.1. Basic relations for infinitesimal flexions. In this small subsection we collect
some useful relations.
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Proposition 1.1. For any infinitesimal flexion of a 2-ribbon surface f the following
properties hold:

〈ḟ1,Dγ ḟ1〉 = 0;(1)

〈ḟ1 −∆ḟ0,Dγ ḟ1 −Dγ∆ḟ0〉 = 0;(2)

〈ḟ1 + ∆ḟ1,Dγ ḟ1 +Dγ∆ḟ1〉 = 0;(3)

〈∆f0,Dγ∆ḟ0〉+ 〈∆ḟ0,Dγ∆f0〉 = 0;(4)

〈∆f1,Dγ∆ḟ1〉+ 〈∆ḟ1,Dγ∆f1〉 = 0;(5)

〈ḟ1,Dγ∆ḟ0〉+ 〈Dγ ḟ1, ∆ḟ0〉 = 0;(6)

〈ḟ1,Dγ∆ḟ1〉+ 〈Dγ ḟ1, ∆ḟ1〉 = 0;(7)

〈Dγ f̈1, ∆f0〉+ 〈f̈1,Dγ∆f0〉 = 0;(8)

〈Dγ f̈1, ∆f1〉+ 〈f̈1,Dγ∆f1〉 = 0.(9)

Remark 1.2. For a semidiscrete or n-ribbon surface f and a C2-curve γ the operations
Dγ, ∆, and ∂

∂t
commute, so we do not pay attention to the order of these operations in

compositions.

Proof. The first three equations follow from the fact that infinitesimal flexions preserve
the norm of tangent vectors to the curves f1, f0, and f2.

The invariance of the lengths of ∆f0 and ∆f1 implies the fourth and the fifth equations.
Equations (6) and (7) follows from invariance of angles between the vectors ḟ1 and ∆ḟ0

and the vectors ḟ1 and ∆ḟ0.
Finally, the last two equations hold since the angles between ∆f0 and ḟ1 and ∆f1 and

ḟ1 are preserved by infinitesimal flexions and therefore

∂

∂t
Dγ〈ḟ1, ∆f0〉 = 0 and

∂

∂t
Dγ〈ḟ1, ∆f1〉 = 0

(in addition we use Equations (6) and (7) respectively). ¤

1.2. Infinitesimal flexibility of 2-ribbon surfaces. In this subsection we write down
a system of differential equations (System A) which describe infinitesimal flexions of a
2-ribbon surface in general position. We show the existence of infinitesimal flexions and
prove that they are proportional to each other (Theorem 1.9). Let

(10)
g1 = 〈Dγ ḟ1, ḟ1〉, g2 = 〈Dγ ḟ1, ∆f0〉, g3 = 〈Dγ ḟ1, ∆f1〉,
g4 = 〈Dγ∆f0, ḟ1〉, g5 = 〈Dγ∆f0, ∆f0〉, g6 = 〈Dγ∆f0, ∆f1〉,
g7 = 〈Dγ∆f1, ḟ1〉, g8 = 〈Dγ∆f1, ∆f0〉, g9 = 〈Dγ∆f1, ∆f1〉.
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Denote by System A the following system of differential equations




ġ1 = 0,

ġ2 =
(

(ḟ1,∆ḟ0,∆f1)

(ḟ1,∆f0,∆f1)
+ (f̈1,∆f0,∆f1)

(ḟ1,∆f0,∆f1)

)
g2 + (ḟ1,∆f0,∆ḟ0)

(ḟ1,∆f0,∆f1)
g3 − (ḟ1,∆f0,f̈1)

(ḟ1,∆f0,∆f1)
g6,

ġ3 = (ḟ1,∆ḟ1,∆f1)

(ḟ1,∆f0,∆f1)
g2 +

(
(ḟ1,∆f0,∆ḟ1)

(ḟ1,∆f0,∆f1)
+ (f̈1,∆f0,∆f1)

(ḟ1,∆f0,∆f1)

)
g3 − (ḟ1,f̈1,∆f1)

(ḟ1,∆f0,∆f1)
g8,

ġ4 = −
(

(ḟ1,∆ḟ0,∆f1)

(ḟ1,∆f0,∆f1)
+ (f̈1,∆f0,∆f1)

(ḟ1,∆f0,∆f1)

)
g2 − (ḟ1,∆f0,∆ḟ0)

(ḟ1,∆f0,∆f1)
g3 + (ḟ1,∆f0,f̈1)

(ḟ1,∆f0,∆f1)
g6,

ġ5 = 0,

ġ6 = −
(

(∆f1,∆f0,ḟ1×∆f0)(ḟ1,∆ḟ0,∆f1)

|ḟ1×∆f0|2(ḟ1,∆f0,∆f1)
− (ḟ1,∆f1,ḟ1×∆f0)(∆ḟ0,∆f0,∆f1)

|ḟ1×∆f0|2(ḟ1,∆f0,∆f1)
+

(ḟ1,∆f0×∆ḟ0,∆f1)

|ḟ1×∆f0|2 + (ḟ1×∆ḟ0,∆f0,∆f1)

|ḟ1×∆f0|2 + (∆ḟ1,∆f0,∆f1)

(ḟ1,∆f0,∆f1)

)
g2−(

(∆f1,∆f0,ḟ1×∆f0)(ḟ1,∆f0,∆ḟ0)

|ḟ1×∆f0|2(ḟ1,∆f0,∆f1)
+ (ḟ1,∆f0,∆f0×∆ḟ0)

|ḟ1×∆f0|2
)

g3−(
(ḟ1,∆f1,ḟ1×∆f0)(ḟ1,∆f0,∆ḟ0)

|ḟ1×∆f0|2(ḟ1,∆f0,∆f1)
− (ḟ1,∆f0,ḟ1×∆ḟ0)

|ḟ1×∆f0|2 − (ḟ1,∆f0,∆ḟ1)

(ḟ1,∆f0,∆f1)

)
g6,

ġ7 = − (ḟ1,∆ḟ1,∆f1)

(ḟ1,∆f0,∆f1)
g2 −

(
(ḟ1,∆f0,∆ḟ1)

(ḟ1,∆f0,∆f1)
+ (f̈1,∆f0,∆f1)

(ḟ1,∆f0,∆f1)

)
g3 + (ḟ1,f̈1,∆f1)

(ḟ1,∆f0,∆f1)
g8,

ġ8 = −
(

(∆f0,∆f1,ḟ1×∆f1)(ḟ1,∆ḟ1,∆f1)

|ḟ1×∆f1|2(ḟ1,∆f0,∆f1)
+ (ḟ1,∆f1,∆f1×∆ḟ1)

|ḟ1×∆f1|2
)

g2−(
(∆f0,∆f1,ḟ1×∆f1)(ḟ1,∆f0,∆ḟ1)

|ḟ1×∆f1|2(ḟ1,∆f0,∆f1)
− (ḟ1,∆f0,ḟ1×∆f1)(∆ḟ1,∆f0,∆f1)

|ḟ1×∆f1|2(ḟ1,∆f0,∆f1)
+

(ḟ1,∆f1×∆ḟ1,∆f0)

|ḟ1×∆f1|2 + (ḟ1×∆ḟ1,∆f1,∆f0)

|ḟ1×∆f1|2 + (∆ḟ0,∆f0,∆f1)

(ḟ1,∆f0,∆f1)

)
g3−(

(ḟ1,∆f0,ḟ1×∆f1)(ḟ1,∆ḟ1,∆f1)

|ḟ1×∆f1|2(ḟ1,∆f0,∆f1)
− (ḟ1,∆f1,ḟ1×∆ḟ1)

|ḟ1×∆f1|2 − (ḟ1,∆ḟ0,∆f1)

(ḟ1,∆f0,∆f1)

)
g8,

ġ9 = 0.

Remark 1.3. In Proposition 2.2 below we show an explicit formula for the function g6+g8,
it is Φ in our notation of Section 2.

Note also that ġ2 + ġ4 = 0 and ġ3 + ġ7 = 0 in System A.

The remaining part of this subsection is dedicated to the proof of Theorem 1.9 on
the structure of the space of infinitesimal flexions. In Proposition 1.4 we show that any
infinitesimal flexion satisfies System A. Then in Proposition 1.6 we prove that any solution
of System A with certain initial data is an infinitesimal flexion. Finally, in Proposition 1.7
we show the uniqueness of the solution of System A for a given initial data. After that
we prove Theorem 1.9.

Let us show that any infinitesimal flexion satisfies System A.

Proposition 1.4. Let ḟ1, ∆f0, and ∆f1 be linearly independent. Then for any infinites-
imal flexion Dγ the functions g1, . . . , g9 satisfy system A.

We start the proof with the following general lemma.

Lemma 1.5. For any infinitesimal flexion Dγ we have the equalities

g1 = g5 = g9 = 0, g2 + g4 = 0, and g3 + g7 = 0.
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Proof. The functions |ḟ1|, |∆f0|, and |∆f1| are infinitesimally preserved by infinitesimal
flexions, hence g1, g5, and g9 vanish.

The invariance of angles between ḟ1 and ∆f0, and ḟ1 and ∆f1 yield the equations
g2 + g4 = 0 and g3 + g7 = 0, respectively. ¤

Proof of Proposition 1.4. From Lemma 1.5 the functions g1, g5, and g9 are equivalent
to zero, thus ġ1, ġ5, and ġ9 are equivalent to zero as well.

Let us prove the expression for ġ2 and ġ3. Note that

ġ2 = 〈Dγ f̈1, ∆f0〉+ 〈Dγ ḟ1, ∆ḟ0〉.

Thus Equations (6) and (8) imply

ġ2 = 〈Dγ ḟ1, ∆ḟ0〉 − 〈f̈1,Dγ∆f0〉.

To obtain the expression for ġ2 rewrite ∆ḟ0 and f̈1 in the basis consisting of vectors ḟ1,
∆f0, and ∆f1. The same strategy works for the functions ġ3.

Now we study expressions for ġ4 and ġ7. From Lemma 1.5 we know that g4 = −g2 and
g7 = −g3 and hence ġ4 = −ġ2 and ġ7 = −ġ3. Therefore, the equations for ġ4 and ġ7 are
satisfied.

In order to get an expression for ġ6, we first note that Dγ(ḟ1, ∆f0, ∆ḟ0) = 0, since the

function (ḟ1, ∆f0, ∆ḟ0) is an invariant of an infinitesimal flexion. So we get

(Dγ ḟ1, ∆f0, ∆ḟ0) + (ḟ1,Dγ∆f0, ∆ḟ0) + (ḟ1, ∆f0,Dγ∆ḟ0) = 0.

Rewrite

(ḟ1, ∆f0,Dγ∆ḟ0) = −(Dγ ḟ1, ∆f0, ∆ḟ0)− (ḟ1,Dγ∆f0, ∆ḟ0)

= −〈Dγ ḟ1, ∆f0×∆ḟ0〉+ 〈Dγ∆f0, ḟ1×∆ḟ0〉
= − (∆f0×∆ḟ0,∆f0,∆f1)

(ḟ1,∆f0,∆f1)
g1 − (ḟ1,∆f0×∆ḟ0,∆f1)

(ḟ1,∆f0,∆f1)
g2 − (ḟ1,∆f0,∆f0×∆ḟ0)

(ḟ1,∆f0,∆f1)
g3+

(ḟ1×∆ḟ0,∆f0,∆f1)

(ḟ1,∆f0,∆f1)
g4 + (ḟ1,ḟ1×∆ḟ0,∆f1)

(ḟ1,∆f0,∆f1)
g5 + (ḟ1,∆f0,ḟ1×∆ḟ0)

(ḟ1,∆f0,∆f1)
g6.

Second, we have

〈Dγ∆ḟ0, ∆f0〉 = −〈Dγ∆f0, ∆ḟ0〉 = − (∆ḟ0,∆f0,∆f1)

(ḟ1,∆f0,∆f1)
g4 − (ḟ1,∆ḟ0,∆f1)

(ḟ1,∆f0,∆f1)
g5 − (ḟ1,∆f0,∆ḟ0)

(ḟ1,∆f0,∆f1)
g6.

Third, we get

〈Dγ∆ḟ0, ḟ1〉 = −〈Dγ ḟ1, ∆ḟ0〉 = − (ḟ1,∆ḟ0,∆f1)

(ḟ1,∆f0,∆f1)
g2 − (ḟ1,∆f0,∆ḟ0)

(ḟ1,∆f0,∆f1)
g3.
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Fourth,

〈Dγ∆ḟ0, ∆f1〉 = (∆f1,∆f0,ḟ1×∆f0)

(ḟ1,∆f0,ḟ1×∆f0)
〈Dγ∆ḟ0, ḟ1〉+ (ḟ1,∆f1,ḟ1×∆f0)

(ḟ1,∆f0,ḟ1×∆f0)
〈Dγ∆ḟ0, ∆f0〉+

(ḟ1,∆f0,∆f1)

(ḟ1,∆f0,ḟ1×∆f0)
(ḟ1, ∆f0,Dγ∆ḟ0).

After a substitution of the four above expressions and simplifications we have

〈Dγ∆ḟ0, ∆f1〉 = −
(

(∆f1,∆f0,ḟ1×∆f0)(ḟ1,∆ḟ0,∆f1)

|ḟ1×∆f0|2(ḟ1,∆f0,∆f1)
− (ḟ1,∆f1,ḟ1×∆f0)(∆ḟ0,∆f0,∆f1)

|ḟ1×∆f0|2(ḟ1,∆f0,∆f1)
+

(ḟ1,∆f0×∆ḟ0,∆f1)

|ḟ1×∆f0|2 + (ḟ1×∆ḟ0,∆f0,∆f1)

|ḟ1×∆f0|2
)

g2−
(

(∆f1,∆f0,ḟ1×∆f0)(ḟ1,∆f0,∆ḟ0)

|ḟ1×∆f0|2(ḟ1,∆f0,∆f1)
+ (ḟ1,∆f0,∆f0×∆ḟ0)

|ḟ1×∆f0|2
)

g3−
(

(ḟ1,∆f1,ḟ1×∆f0)(ḟ1,∆f0,∆ḟ0)

|ḟ1×∆f0|2(ḟ1,∆f0,∆f1)
− (ḟ1,∆f0,ḟ1×∆ḟ0)

|ḟ1×∆f0|2
)

g6.

Further, we get

〈Dγ∆f0, ∆ḟ1〉 = (∆ḟ1,∆f0,∆f1)

(ḟ1,∆f0,∆f1)
g4 + (ḟ1,∆ḟ1,∆f1)

(ḟ1,∆f0,∆f1)
g5 + (ḟ1,∆f0,∆ḟ1)

(ḟ1,∆f0,∆f1)
g6.

From the last two identities, by substituting g5 = 0 and g4 = −g2 (see Lemma 1.5), we
obtain the expression for ġ6.

The expression for ġ8 is calculated in a similar way. This concludes the proof. ¤
Further we prove that any solution of System A with certain initial data is an infini-

tesimal flexion.

Proposition 1.6. Let f be a 2-ribbon surface, fi : [a, b] → R3 for i = 0, 1, 2. Assume that

the function (ḟ1, ∆f0, ∆f1) has no zeros on [a, b]. Then any infinitesimal perturbation Dγ

of f satisfying System A and the boundary conditions

Dγ ḟ1(a) = 0, Dγ∆f1(a) = 0, and Dγ∆f0(a) = αḟ1(a)×∆f0(a).

is an infinitesimal flexion.

Proof. By the definition of an infinitesimal flexion it is enough to check that the following
11 functions are preserved by the infinitesimal perturbation:

|ḟi|, |∆fi|, 〈ḟi, ∆fi−1〉, 〈ḟi, ∆fi〉, and 〈ḟi, ḟi+1〉
(for all possible admissible i).

Invariance of |ḟ1|, |∆f0|, |∆f1|, 〈ḟ1, ∆f0〉, and 〈ḟ1, ∆f1〉.
From System A we have

ġ1 = 0, ġ5 = 0, ġ9 = 0, ġ4 + ġ2 = 0, ġ7 + ġ3 = 0,
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and hence all five functions under consideration are constants. So it is enough to show
that they vanish at some point: we show this at point a.

Dγ〈ḟ1(a), ḟ1(a)〉 = 2〈Dγ ḟ1(a), ḟ1(a)〉 = 2〈0, ḟ1(a)〉 = 0;

Dγ〈∆f0(a), ∆f0(a)〉 = 2〈Dγ∆f0(a), ∆f0(a)〉 = 2〈αḟ1(a)×∆f0(a), ∆f0(a)〉 = 0;
Dγ〈∆f1(a), ∆f1(a)〉 = 2〈Dγ∆f1(a), ∆f1(a)〉 = 2(0, ∆f1(a)〉 = 0;

Dγ〈ḟ1(a), ∆f0(a)〉 = 〈Dγ ḟ1(a), ∆f0(a)〉+ 〈ḟ1(a),Dγ∆f0(a)〉 = 〈0, ∆f0(a)〉+
〈ḟ1(a), αḟ1(a)×∆f0(a)〉 = 0;

Dγ〈ḟ1(a), ∆f1(a)〉 = 〈Dγ ḟ1(a), ∆f1(a)〉+ 〈ḟ1(a),Dγ∆f1(a)〉 = 〈0, ∆f0(a)〉+
〈ḟ1(a), 0〉 = 0.

Invariance of 〈ḟ0, ∆f0〉 and 〈ḟ2, ∆f1〉. Note that

〈ḟ0, ∆f0〉 = −1

2

∂

∂t
〈∆f0, ∆f0〉+ 〈ḟ1, ∆f0〉.

Hence Dγ〈ḟ0, ∆f0〉 = 0. Similar reasoning shows that Dγ〈ḟ2, ∆f1〉 = 0.

Invariance of 〈ḟ0, ḟ1〉 and 〈ḟ1, ḟ2〉. Let us prove that Dγ〈ḟ0, ḟ1〉 = 0. First, note that

〈Dγ ḟ0, ḟ1〉 = 〈Dγ ḟ1, ḟ1〉 − 〈Dγ∆ḟ0, ḟ1〉 = −〈Dγ∆ḟ0, ḟ1〉 = 〈Dγ∆f0, f̈1〉 − ∂

∂t
〈Dγ∆f0, ḟ1〉.

Recall that ∂
∂t
〈Dγ∆f0, ḟ1〉 = ġ4 = −ġ2. Let us substitute the expression for ġ2 from

System A and rewrite f̈1 in the basis of vectors ḟ1, ∆f0, and ∆f1. One obtains

〈Dγ∆f0, f̈1〉+ ġ2 =
(ḟ1, ∆ḟ0, ∆f1)

(ḟ1, ∆f0, ∆f1)
〈Dγ ḟ1, ∆f0〉+

(ḟ1, ∆f0, ∆ḟ0)

(ḟ1, ∆f0, ∆f1)
〈Dγ ḟ1, ∆f1〉 =

= 〈Dγ ḟ1, ∆ḟ0〉 = −〈Dγ ḟ1, ḟ0〉.

Hence

Dγ〈ḟ0, ḟ1〉 = 〈Dγ ḟ0, ḟ1〉+ 〈Dγ ḟ1, ḟ0〉 = 0.

It follows that 〈ḟ0, ḟ1〉 is invariant under the infinitesimal perturbation. The proof of the

invariance of 〈ḟ1, ḟ2〉 is analogous.

Invariance of 〈ḟ0, ḟ0〉 and 〈ḟ2, ḟ2〉. Let us prove that Dγ〈ḟ0, ḟ0〉 = 0.

Dγ〈ḟ0, ḟ0〉 = 2〈Dγ ḟ0, ḟ0〉 = 2〈Dγ∆ḟ0, ∆ḟ0〉+ 2Dγ〈ḟ1, ḟ0〉 − 2〈Dγ ḟ1, ḟ1〉.
We have already shown that Dγ〈ḟ1, ḟ0〉 = 0 and 〈Dγ ḟ1, ḟ1〉 = 0. Hence

Dγ〈ḟ0, ḟ0〉 = 2〈Dγ∆ḟ0, ∆ḟ0〉.
We rewrite the last ∆ḟ0 in the last expression in the basis ḟ1, ∆f0, ḟ1×∆f0 and get
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(Dγ∆ḟ0, ∆ḟ0〉 = (∆ḟ0,∆f0,ḟ1×∆f0)

(ḟ1,∆f0,ḟ1×∆f0)
〈Dγ∆ḟ0, ḟ1〉+ (ḟ1,∆ḟ0,ḟ1×∆f0)

(ḟ1,∆f0,ḟ1×∆f0)
〈Dγ∆ḟ0, ∆f0〉+

(ḟ1,∆f0,∆ḟ0)

(ḟ1,∆f0,ḟ1×∆f0)
(Dγ∆ḟ0, ḟ1, ∆f0).

Let us rewrite 〈Dγ∆ḟ0, ḟ1〉, 〈Dγ∆ḟ0, ∆f0〉, and (Dγ∆ḟ0, ḟ1, ∆f0) in terms of g1, . . . , g9.
First, we have:

〈Dγ∆ḟ0, ḟ1〉 = 〈Dγ ḟ0, ḟ1〉 = −〈Dγ ḟ1, ḟ0〉 = −〈Dγ ḟ1, ∆ḟ0〉.
The second equality holds since we have shown that Dγ〈ḟ0, ḟ1〉 = 0. If we rewrite ∆ḟ0 in

the basis ḟ1, ∆f0, ∆f1, we get the following:

〈Dγ ḟ0, ḟ1〉 = − (ḟ1,∆ḟ0,∆f1)

(ḟ1,∆f0,∆f1)
g2 − (ḟ1,∆f0,∆ḟ0)

(ḟ1,∆f0,∆f1)
g3.

Second, we have

〈Dγ∆ḟ0, ∆f0〉 = −〈Dγ∆f0, ∆ḟ0〉 = (∆ḟ0,∆f0,∆f1)

(ḟ1,∆f0,∆f1)
g2 − (ḟ1,∆f0,∆ḟ0)

(ḟ1,∆f0,∆f1)
g6.

Third, with

ġ6 − 〈Dγ∆f0, ∆ḟ1〉 =〈Dγ∆ḟ0, ∆f1〉 = (∆f1,∆f0,ḟ1×∆f0)

(ḟ1,∆f0,ḟ1×∆f0)
〈Dγ∆ḟ0, ḟ1〉+

(ḟ1,∆f1,ḟ1×∆f0)

(ḟ1,∆f0,ḟ1×∆f0)
〈Dγ∆ḟ0, ∆f0〉+ (ḟ1,∆f0,∆f1)

(ḟ1,∆f0,ḟ1×∆f0)
(Dγ∆ḟ0, ḟ1, ∆f0).

and the expression for ġ6 from System A we get:

(Dγ∆ḟ0, ḟ1, ∆f0) = −
(

(ḟ1×∆ḟ0,∆f0,∆f1)

(ḟ1,∆f0,∆f1)
+ (ḟ1,∆f0×∆ḟ0,∆f1)

(ḟ1,∆f0,∆f1)

)
g2 − (ḟ1,∆f0,∆f0×∆ḟ0)

(ḟ1,∆f0,∆f1)
g3+

(ḟ1,∆f0,ḟ1×∆ḟ0)

(ḟ1,∆f0,∆f1)
g6.

Finally, we combine these three expressions and arrive at

〈Dγ∆ḟ0, ∆ḟ0〉 =
(
− (∆ḟ0,∆f0,ḟ1×∆f0)(ḟ1,∆ḟ0,∆f1)

(ḟ1,∆f0,ḟ1×∆f0)(ḟ1,∆f0,∆f1)
+ (ḟ1,∆ḟ0,ḟ1×∆f0)(∆ḟ0,∆f0,∆f1)

(ḟ1,∆f0,ḟ1×∆f0)(ḟ1,∆f0,∆f1)
−

(ḟ1,∆f0,∆ḟ0)(ḟ1×∆ḟ0,∆f0,∆f1)

(ḟ1,∆f0,ḟ1×∆f0)(ḟ1,∆f0,∆f1)
− (ḟ1,∆f0,∆ḟ0)(ḟ1,∆f0×∆ḟ0,∆f1)

(ḟ1,∆f0,ḟ1×∆f0)(ḟ1,∆f0,∆f1)

)
g2+

(
− (∆ḟ0,∆f0,ḟ1×∆f0)(ḟ1,∆f0,∆ḟ0)

(ḟ1,∆f0,ḟ1×∆f0)(ḟ1,∆f0,∆f1)
− (ḟ1,∆f0,∆ḟ0)(ḟ1,∆f0,∆f0×∆ḟ0)

(ḟ1,∆f0,ḟ1×∆f0)(ḟ1,∆f0,∆f1)

)
g3+

(
− (ḟ1,∆ḟ0,ḟ1×∆f0)(ḟ1,∆f0,∆ḟ0)

(ḟ1,∆f0,ḟ1×∆f0)(ḟ1,∆f0,∆f1)
+ (ḟ1,∆f0,∆ḟ0)(ḟ1,∆f0,ḟ1×∆ḟ0)

(ḟ1,∆f0,ḟ1×∆f0)(ḟ1,∆f0,∆f1)

)
g6.

It is clear that the coefficients of g3 and g6 vanish identically. Let us study the coefficient
of g2.

Consider the following mixed product (∆ḟ0, ∆ḟ0, ḟ1×∆f0), it is identical to zero. Let

us rewrite ∆ḟ0 in the second position of the mixed product in the basis ḟ0, ∆f0, ∆f1. We
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get the relation

(∆ḟ0,∆f0,∆f1)

(ḟ1,∆f0,∆f1)
(∆ḟ0, ḟ1, ḟ1×∆f0) + (ḟ1,∆ḟ0,∆f1)

(ḟ1,∆f0,∆f1)
(∆ḟ0, ∆f0, ḟ1×∆f0)

= − (ḟ1,∆f0,∆ḟ0)

(ḟ1,∆f0,∆f1)
(∆ḟ0, ∆f1, ḟ1×∆f0).

We apply this identity to the first two summands of the coefficient of g2 and get the
following expression for the coefficient of g2:

(ḟ1,∆f0,∆ḟ0)(∆ḟ0,∆f1,ḟ1×∆f0)

(ḟ1,∆f0,∆f1)|ḟ1×∆f0|2 − (ḟ1,∆f0×∆ḟ0,∆f1)(ḟ1,∆f0,∆ḟ0)

(ḟ1,∆f0,∆f1)|ḟ1×∆f0|2 − (ḟ1×∆ḟ0,∆f0,∆f1)(ḟ1,∆f0,∆ḟ0)

(ḟ1,∆f0,∆f1)|ḟ1×∆f0|2 .

We rewrite this as

(ḟ1,∆f0,∆ḟ0)

(ḟ1,∆f0,∆f1)|ḟ1×∆f0|2
(
(∆ḟ0, ∆f1, ḟ1×∆f0)−(ḟ1, ∆f0×∆ḟ0, ∆f1)−(ḟ1×∆ḟ0, ∆f0, ∆f1)

)
.

Let us study the expression in the brackets.

(∆ḟ0, ∆f1, ḟ1×∆f0)−(ḟ1, ∆f0×∆ḟ0, ∆f1)−(ḟ1×∆ḟ0, ∆f0, ∆f1) =

−(
∆ḟ0×(ḟ1×∆f0) + ḟ1×(∆f0×∆ḟ0) + ∆f0×(∆ḟ0×ḟ1), ∆f1

)
= (0, ∆f1) = 0.

The second equality holds by the Jacobi identity. Hence the coefficient of g2 is zero.
Therefore,

Dγ〈ḟ0, ḟ0〉 = 2〈Dγ∆ḟ0, ∆ḟ0〉 = 0,

and 〈ḟ0, ḟ0〉 is invariant under the infinitesimal perturbation.

The proof of the invariance of 〈ḟ2, ḟ2〉 repeats the proof for 〈ḟ0, ḟ0〉.
So we have checked the invariance of all the 11 functions in the definition of an infini-

tesimal flexion. Hence the infinitesimal perturbation Dγ is an infinitesimal flexion. ¤

In the following proposition we prove that System A has a unique solution for any single
2-ribbon surface f (not for a deformation) and initial data for gi at one point f(t0). Recall
that t is an argument of f .

Proposition 1.7. Let f be a 2-ribbon surface, fi : [a, b] → R3 for i = 0, 1, 2. For any
collection of initial data gi(t0) = ci there exists a unique solution of System A. This
solution is extended for all t < T0, where

T0 = min
{
T > t0 |

(
ḟ1(T ), ∆f0(T ), ∆f1(T )

)
= 0

}
.

Proof. The system of differential equations for t0 ≤ t < T0 is a system of homogeneous
linear equations with variable coefficients and hence for any collection of initial data it
has a unique solution. ¤

The initial conditions of the last proposition can be reformulated in terms of infinitesi-
mal flexion Dγ ḟ1 at a single point t0 itself.

Corollary 1.8. Let f be a 2-ribbon surface, fi : [a, b] → R3 for i = 0, 1, 2. For any
collection of initial data

Dγ ḟ1(t0) = v1, Dγ∆f0(t0) = v2, and Dγ∆f1(t0) = v3.
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there exists a unique solution of System A. This solution is extended for all t < T0, where

T0 = min
{
T > t0 |

(
ḟ1(T ), ∆f0(T ), ∆f1(T )

)
= 0

}
.

Proof. The corollary follows directly from Proposition 1.7 after obtaining the ”initial val-
ues ci” from the vectors vi:

c1 = 〈v1, ḟ1〉, c2 = 〈v1, ∆f0〉, c3 = 〈v1, ∆f1〉,
c4 = 〈v2, ḟ1〉, c5 = 〈v2, ∆f0〉, c6 = 〈v2, ∆f1〉,
c7 = 〈v3, ḟ1〉, c8 = 〈v3, ∆f0〉, c9 = 〈v3, ∆f1〉.

¤

Now we have all the ingredients to prove the general theorem on the structure of the
space of infinitesimal flexions.

Theorem 1.9. Consider a 2-ribbon surface defined by curves fi : [a, b] → R3 for i =
0, 1, 2, where f0 and f2 are C1-smooth and f1 is C2-smooth. Assume that the function
(ḟ1, ∆f0, ∆f1) has no zeroes on [a, b]. The space of infinitesimal flexions of such surfaces
(up to isometries) is one-dimensional.

Proof. Uniqueness. Any infinitesimal flexion is isometrically equivalent to an infinitesimal
flexion which satisfies

Dγ ḟ1(a) = 0, Dγ∆f1(a) = 0, and Dγ∆f0(a) = αḟ1(a)×∆f0(a).

Consider functions gi defined by Equations (10). By Proposition 1.4 these functions satisfy
System A. Hence by Corollary 1.8, the functions gi are uniquely defined by f and the initial
conditions for infinitesimal flexions. Recall that elements of an arbitrary Euclidean vector
v = (c1, c2, c3) are uniquely determined by its scalar products with an arbitrary basis:




c1

c2

c3


 =



〈e1, e1〉 〈e1, e2〉 〈e1, e3〉
〈e2, e1〉 〈e2, e2〉 〈e2, e3〉
〈e3, e1〉 〈e3, e2〉 〈e3, e3〉



−1 


〈e1, v〉
〈e2, v〉
〈e3, v〉


 .

Therefore, the infinitesimal flexion is uniquely defined by the functions gi. Hence the
dimension of infinitesimal flexions is at most one (the parameter γ is the unique parameter
of this flexion).

Existence. By Corollary 1.8 there exists an infinitesimal deformation satisfying system
A and the initial values

Dγ ḟ1(a) = 0, Dγ∆f1(a) = 0, and Dγ∆f0(a) = ḟ1(a)×∆f0(a).

By Proposition 1.6 this infinitesimal deformation is an infinitesimal flexion. Since the
function (ḟ1, ∆f0, ∆f1) has no zeroes, ḟ1(a)×∆f0(a) is a nonzero vector and hence the
infinitesimal deformation is nonvanishing. ¤
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1.3. Variational operator of infinitesimal flexions. Let us fix an orthonormal basis
(e1, e2, e3) in R3. Suppose that we know the coordinates of a 2-ribbon surface f : [a, b]×
{0, 1, 2} → R3 in this basis. Denote the coordinate functions for ḟ1, ∆f0, and ∆f1 as
follows

ḟ1(t) =
(
h1(t), h2(t), h3(t)

)
, ∆f0(t) =

(
h4(t), h5(t), h6(t)

)
, ∆f1(t) =

(
h7(t), h8(t), h9(t)

)
.

Denote by Ω1
9 the Banach space (C1[a, b])9 with the norm

‖(h1, . . . , h9)‖ = max
1≤i≤9

(max(sup |hi|, sup |ḣi|)).

Note that any 2-ribbon surface f is defined by the curves ḟ1, ∆f0, and ∆f1 up to a
translation. So the space Ω1

9 is actually the space of all 2-ribbon surfaces with one endpoint
fixed, say f1(a) = (0, 0, 0).

We say that a point h = (h1, . . . , h9) is in general position if the determinant

det




h1 h2 h3

h4 h5 h6

h7 h8 h9


 6= 0

for any point in the segment [a, b]. This condition obviously corresponds to

(ḟ1, ∆f0, ∆f1) 6= 0.

Definition 1.10. Denote by V : [0, Λ]×Ω1
9 → Ω1

9 the variational operator of infinitesimal
flexion in coordinates (h1, . . . , h9):

V3(l−1)+m(λ, h) =
(em, ∆f0, ∆f1)

(ḟ1, ∆f0, ∆f1)
g3(l−1)+1(h) +

(ḟ1, em, ∆f1)

(ḟ1, ∆f0, ∆f1)
g3(l−1)+2(h)+

(ḟ1, ∆f0, em)

(ḟ1, ∆f0, ∆f1)
g3(l−1)+3(h).

(11)

for (1 ≤ l,m ≤ 3). Here g1(h), . . . , g9(h) is a solution of System A at point f with the
initial conditions corresponding to

Dγ ḟ1(a) = 0, Dγ∆f1(a) = 0, and Dγ∆f0(a) = ḟ1(a)×∆f0(a),

i. e.,
g1(a) = 0, g2(a) = 0, g3(a) = 0,

g4(a) = 0, g5(a) = 0, g6(a) = (ḟ1(a), ∆f0(a), ∆f1(a)〉,
g7(a) = 0, g8(a) = 0, g9(a) = 0.

Note that the variational operator of infinitesimal flexion V is autonomous, it does not
depend on time parameter λ.

Remark 1.11. Let us show in brief how to find the coordinates of the perturbation Dγf
in the basis e1, e2, e3 satisfying

Dγf1(a) = 0, Dγ ḟ1(a) = 0, Dγ∆f0(a) = ḟ1(a)×∆f0(a), and Dγ∆f1(a) = 0.
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First, one should solve System A with the above initial data, then substitute the obtained
solution (g1, . . . , g9) to Equations (11). Now we have the coordinates of Dγ ḟ1, Dγ∆f0,
and Dγ∆f1. Having the additional condition Dγf1(0) = 0 one can construct Dγf1, Dγf0,
and Dγf2:

Dγf1(t0) =

t0∫

a

Dγ ḟ1(t)d(t), Dγf0 = Dγf1 −Dγ∆f0, Dγf2 = Dγf1 +Dγ∆f1.

1.4. Finite flexibility of 2-ribbon surfaces. In previous subsection we showed that
any 2-ribbon surface in general position is infinitesimally flexible and the space of its
infinitesimal flexions is one-dimensional. The aim of this subsection is to show that a
2-ribbon surface in general position is flexible and has one degree of freedom.

We start with the discussion of the initial value problem for the following differential
equation on the set of all points Ω1

9 in general position (here λ is the time parameter):

∂h

∂λ
= V(λ, h).

To solve the initial value problem we study local Lipschitz properties for V .

Definition 1.12. Consider a Banach space E with a norm | ∗ |E and let U be a subset
of [0, Λ] × E. We say that a functional F : U → E locally satisfies a Lipschitz condition
if for any point (λ0, p) in U there exist a neighborhood V of the point and a constant K
such that for any pair of points (λ, p1) and (λ, p2) in V the inequality

|F(λ, p1)−F(λ, p2)|E ≤ K|p1 − p2|E
holds.

First we verify a Lipschitz condition for the following operator. Define G : [0, Λ]×Ω1
9 →

Ω1
9 by

Gi(λ, h) = gi(h), i = 1, . . . , 9,

where gi(h) are defined by Equations (10).

Lemma 1.13. The functional G locally satisfies a Lipschitz condition at any point in
general position.

Proof. Consider a point h ∈ U . The element (g1, . . . , g9) itself satisfies a linear system of
differential equations (System A). The coefficients of this system depend only on a point
of Ω1

9. Since the point h is in general position, there exists an integer constant K such
that for a sufficiently small neighborhood Vh of h the dependence is K-Lipschitz, i.e., for
p and q from Vh all the coefficients satisfy the inequality

|c(p)− c(q)| < K‖p− q‖.
Hence the solutions for t ∈ [a, b] satisfy the Lipschitz condition on Vh as well: for some
constants K l we have

sup(|gl(p)− gl(q)|) < K l‖p− q‖, l = 1, . . . , 9.
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From System A we know that the ġl linearly depend on g1, . . . , g9, therefore, we get the
Lipschitz condition for the derivatives: for some constants K̃l we have

sup(|ġl(p)− ġl(q)|) < K̃l‖p− q‖, l = 1, . . . , 9.

Thus there exists a real number K̂ such that for all points p and q in Vh,

‖G(λ, p)− G(λ, q)‖ = max
1≤l≤9

(
max

(
sup |gl(p)− gl(q)|, sup |ġl(p)− ġl(q)|

))
< K̂‖p− q‖.

Therefore, G satisfies a Lipschitz condition on Vh. ¤
Lemma 1.13 and Expression (11) directly imply the following statement.

Corollary 1.14. The functional V locally satisfies a Lipschitz condition at points in gen-
eral position. ¤

Now we prove the following theorem on finite flexibility of 2-ribbon surfaces in general
position.

Theorem 1.15. Consider a 2-ribbon surface defined by a C2-curve f1 and C1-curves f0

and f2 defined on a segment [a, b]. Assume that (ḟ1, ∆f0, ∆f1) does not have zeros on
[a, b]. Then the set of all flexions of such surface (up to isometries) is one-dimensional.

Proof. As we show in Corollary 1.14, the operator V satisfies a Lipschitz condition in
some neighborhood of the point p related to ḟ1, ∆f0, and ∆f1. From the general theory
of differential equations on Banach spaces (see for instance the first section of the second
chapter of [4]) it follows that this condition implies local existence and uniqueness of a
solution of the initial value problem for the following differential equation

∂h

∂λ
= V(λ, h)

in some neighborhood of h.
Since the 2-ribbon surface (f0, f1, f2) with a fixed endpoint f0(a) is uniquely defined by

(ḟ1, ∆f0, ∆f1) ∈ Ω1
9, we get the statement of the theorem. ¤

2. Flexibility of n-ribbon surfaces

In this section we study necessary flexibility conditions of n-ribbon surfaces. We find
these conditions for 3-ribbon surfaces, and we show how they are related to the conditions
for n-ribbon surfaces.

2.1. Preliminary statements on infinitesimal flexion of 3-ribbon surfaces. In this
subsection we prove certain relations that we further use in the proof of the statement on
infinitesimal flexibility conditions for 3-ribbon surfaces.

Remark 2.1. As we have shown in Section 1 the notions of finite flexibility and infinitesimal
flexibility coincide for the 2-ribbon case. Still in this subsection we say infinitesimal
flexions of a 2-ribbon surface to indicate that an infinitesimal flexion of an n-ribbon
surface coincides with finite flexions of all its 2-ribbon surfaces.
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Consider the following function

Φ = 〈∆f0, ∆f1〉.
This function plays a central role in our further description of the flexibility conditions
of 3-ribbon and n-ribbon surfaces (see Theorem 2.7 and Theorem 2.13). Let DγΦ be the
infinitesimal flexion of Φ. Via this function we describe monodromy conditions for finite
flexibility. Proposition 2.2 and Corollary 2.6 deliver necessary tools to describe continuous
and discrete parts of the monodromy condition on Φ.

2.1.1. Continuous shift. Here we study the dependence of the infinitesimal flexion DγΦ
on the argument t.

Proposition 2.2. (On continuous shift.) Suppose ḟ1, ∆f0, and ∆f1 are linearly in-
dependent on the segment [t1, t2]. Then for an infinitesimal flexion DγΦ the following
condition holds:

DγΦ(t2) = DγΦ(t1) · exp




t2∫

t1

(ḟ1, ∆ḟ0, ∆f1) + (ḟ1, ∆f0, ∆ḟ1)

(ḟ1, ∆f0, ∆f1)
dt


.

This is a direct consequence of the next lemma.
Lemma 2.3. Let ḟ1, ∆f0, and ∆f1 be linearly independent, then we have

DγΦ̇ =
(ḟ1, ∆ḟ0, ∆f1) + (ḟ1, ∆f0, ∆ḟ1)

(ḟ1, ∆f0, ∆f1)
DγΦ.

Proof. Note that

DγΦ = 〈Dγ∆f0, ∆f1〉+ 〈∆f0,Dγ∆f1〉, and

DγΦ̇ = 〈Dγ∆ḟ0, ∆f1〉+ 〈Dγ∆f0, ∆ḟ1〉+ 〈∆ḟ0,Dγ∆f1〉+ 〈∆f0,Dγ∆ḟ1〉.
Let us prove the statement of the lemma for an arbitrary point t0. Without loss of
generality we fix Dγ ḟ1(t0) = 0 and Dγ∆f1(t0) = 0 (this is possible since any flexion is
isometric to a flexion with such properties and isometries of flexions do not change the
functions in the formula of the lemma). ThenDγ∆f0(t0) is proportional to ḟ1(t0)×∆f0(t0),
and hence there exists some real number α with

Dγ∆f0(t0) = αḟ1(t0)×∆f0(t0).

Thus we immediately get

DγΦ(t0) =
〈Dγ∆f0(t), ∆f1(t)

〉
= α

(
ḟ1(t0), ∆f0(t0), ∆f1(t0)

)
.

Let us express the summands for DγΦ̇(t0). We start with
〈Dγ∆ḟ0(t0), ∆f1(t0)

〉
. First we

note that

(i) ∆f1 =
(∆f1, ∆f0, f1×∆ḟ0)

(ḟ1, ∆f0, ḟ1×∆f0)
ḟ1 +

(ḟ1, ∆f1, f1×∆ḟ0)

(ḟ1, ∆f0, ḟ1×∆f0)
∆f0 +

(ḟ1, ∆f0, ∆f1)

(ḟ1, ∆f0, ḟ1×∆f0)
f1×∆ḟ0.

Equation (6) implies

(ii)
〈Dγ∆ḟ0(t0), ḟ1(t0)

〉
= −〈Dγ ḟ1(t0), ∆ḟ0(t0)

〉
= −〈

0, ∆ḟ0(t0)
〉

= 0.
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From Equation (4) we have

(iii)
〈Dγ∆ḟ0(t0), ∆f0(t0)

〉
= −〈Dγ∆f0(t0), ∆ḟ0(t0)

〉
= −α

(
ḟ1(t0), ∆f0(t0), ∆ḟ0(t0)

)
.

The function (∆ḟ0, ḟ1, ∆f0) is invariant of an infinitesimal flexion, therefore:

(Dγ∆ḟ0, ḟ1, ∆f0) + (∆ḟ0,Dγ ḟ1, ∆f0) + (∆ḟ0, ḟ1,Dγ∆f0) = 0,

and hence

(iv)

〈Dγ∆ḟ0(t0), ḟ1(t0)×∆f0(t0)
〉

= −(
∆ḟ0(t0), ḟ1(t0),Dγ∆f0(t0)

)
= −α

(
∆ḟ0(t0), ḟ1(t0), ḟ1(t0)×∆f0(t0)

)
.

Now we decompose ∆ḟ0(t0) in the last formula in the basis of vectors ḟ1(t0), ∆f0(t0), and
∆f1(t0):

(
∆ḟ0(t0), ḟ1(t0), ḟ1(t0)×∆f0(t0)

)
=

(
ḟ1(t0),∆ḟ0(t0),∆f1(t0)

)
(

ḟ1(t0),∆f0(t0),∆f1(t0)
)(

∆f0(t0), ḟ1(t0), ḟ1(t0)×∆f0(t0)
)
+

(
ḟ1(t0),∆f0(t0),∆ḟ0(t0)

)
(

ḟ1(t0),∆f0(t0),∆f1(t0)
)(

∆f1(t0), ḟ1(t0), ḟ1(t0)×∆f0(t0)
)
.

Therefore, after substitution (i) of ∆f2 we apply (ii), (iii), (iv), and the last expression
and get

〈Dγ∆ḟ0(t0), ∆f1(t0)
〉

= −α

(
ḟ1(t0),∆f1(t0),ḟ1(t0)×∆f0(t0)

)
(

ḟ1(t0),∆f0(t0),ḟ1(t0)×∆f0(t0)
)(

ḟ1(t0), ∆f0(t0), ∆ḟ0(t0)
)−

α

(
ḟ1(t0),∆ḟ0(t0),∆f1(t0)

)
(

ḟ1(t0),∆f0(t0),ḟ1(t0)×∆f0(t0)
)(

∆f0(t0), ḟ1(t0), ḟ1(t0)×∆f0(t0)
)−

α

(
ḟ1(t0),∆f0(t0),∆ḟ0(t0)

)
(

ḟ1(t0),∆f0(t0),ḟ1(t0)×∆f0(t0)
)(

∆f1(t0), ḟ1(t0), ḟ1(t0)×∆f0(t0)
)

=− α
(
ḟ1(t0), ∆f1(t0), ∆ḟ0(t0)

)
.

Similar calculations for the summand
〈
∆f0(t0),Dγ∆ḟ1(t0)

〉
(applying Equations (3), (5),

and (7) and the conditions Dγ ḟ1(t0) = 0 and Dγ∆f1(t0) = 0) show that
〈
∆f0(t0),Dγ∆ḟ1(t0)

〉
= 0.

Further we have 〈Dγ∆f0(t0), ∆ḟ1(t0)
〉

= α
(
ḟ1(t0), ∆f0(t0), ∆ḟ1(t0)

)
,〈

∆ḟ0(t0),Dγ∆f1(t0)
〉

= 0.

Therefore,

DγΦ̇(t0) = α
((

ḟ1(t0), ∆ḟ0(t0), ∆f1(t0)
)

+
(
ḟ1(t0), ∆f0(t0), ∆ḟ1(t0)

))
,



18 OLEG KARPENKOV

and consequently

DγΦ̇(t0) =

(
ḟ1(t0), ∆ḟ0(t0), ∆f1(t0)

)
+

(
ḟ1(t0), ∆f0(t0), ∆ḟ1(t0)

)
(
ḟ1(t0), ∆f0(t0), ∆f1(t0)

) DγΦ(t0).

Thus Lemma 2.3 holds for all possible values of t0. ¤
2.1.2. Discrete shift. Any 3-ribbon surface contain 2-ribbon surfaces as a subsurfaces.
Each of them has an infinitesimal flexion DγΦi (i = 1, 2). Here we show the relation
between DγΦ1 and DγΦ2 for the same values of argument t.

First, in Proposition 2.4 we show a relation for Dγ〈f̈1, f̈1〉 and Dγ〈f̈2, f̈2〉. Second, in

Proposition 2.5 we give a link between Dγ〈f̈1, f̈1〉 and DγΦi. This will result in the formula
of Corollary 2.6 on the relation between DγΦ1 and DγΦ2.

We start with a formula expressing Dγ〈f̈2, f̈2〉 via Dγ〈f̈1, f̈1〉.
Proposition 2.4. We have the following equation:

Dγ〈f̈2, f̈2〉 =
(ḟ2, f̈2, ∆f1)

(ḟ1, f̈1, ∆f1)
Dγ〈f̈1, f̈1〉.

Proof. We do calculations at a point t0 again assuming that Dγ ḟ1(t0) = 0 and Dγ∆f1(t0) =
0 (by choosing an appropriate isometric representative of the deformation). Let us show

that Dγ ḟ2(t0) = 0. First, note that

Dγ ḟ2(t0) = Dγ ḟ1(t0) +Dγ∆ḟ1(t0) = Dγ∆ḟ1(t0).

Secondly we show that the inner products of Dγ∆ḟ1(t0) and the vectors ḟ1(t0), ∆f1(t0),

and ḟ1(t0)×∆f1(t0) are all zero (this would imply that Dγ∆ḟ1(t0) = 0).
From Equation (7) we have

〈Dγ∆ḟ1(t0), ḟ1(t0)
〉

= −〈Dγ ḟ1(t0), ∆ḟ1(t0)
〉

= −〈
0, ∆ḟ1(t0)

〉
= 0.

Further, from Equations (5), we get
〈Dγ∆ḟ1(t0), ∆f1(t0)

〉
= −〈Dγ∆f1(t0), ∆ḟ1(t0)

〉
= 0.

Finally, from the equation Dγ(ḟ1, ∆f1, ∆ḟ1) = 0 we obtain
〈Dγ∆ḟ1(t0), ḟ1(t0)×∆f1(t0)

〉
=

−(
∆ḟ1(t0),Dγ ḟ1(t0), ∆f1(t0)

)− (
∆ḟ1(t0), ḟ1(t0),Dγ∆f1(t0)

)
= 0.

Therefore, Dγ∆ḟ1(t0) = 0, and hence Dγ ḟ2(t0) = 0.

From Equation (1) and Equation (9) we get
〈Dγ f̈1(t0), ḟ1(t0)

〉
= ∂

∂t

〈Dγ ḟ1(t0), ḟ1(t0)
〉− 〈

f̈1(t0),Dγ ḟ1(t0)
〉

= 0− 〈
f̈1(t0), 0

〉
= 0;〈Dγ f̈1(t0), ∆f1(t0)

〉
= −〈

f̈1(t0),Dγ∆f1(t0)
〉

= −〈
f̈1(t0), 0

〉
= 0.

Therefore, for some real number β1 we have

Dγ f̈1(t0) = β1ḟ1(t0)×∆f1(t0).
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By a similar reasoning (since we have shown that Dγ ḟ2(t0) = 0) we get

Dγ f̈2(t0) = β2ḟ2(t0)×∆f1(t0).

Since ∂
∂t

(Dγ(ḟ1, ∆f1, ḟ2)
)

= 0, at point t0 we have
(Dγ f̈1(t0), ∆f1(t0), ḟ2(t0)

)
+

(
ḟ1(t0), ∆f1(t0),Dγ f̈2(t0)

)
= 0.

Hence,

β1

(
ḟ1(t0)×∆f1(t0), ∆f1(t0), ḟ2(t0)

)
+ β2

(
ḟ1(t0), ∆f1(t0), ḟ2(t0)×∆f1(t0)

)
= 0,

and, therefore β1 = β2. This implies

Dγ

〈
f̈1(t0), f̈1(t0)

〉
= 2

〈Dγ f̈1(t0), f̈(t0)
〉

= 2β1

(
ḟ1(t0), ∆f1(t0), f̈1(t0)

)

and

Dγ

〈
f̈2(t0), f̈2(t0)

〉
= 2β1

(
ḟ2(t0), ∆f1(t0), f̈2(t0)

)
.

The last two formulas imply the statement of Proposition 2.4. ¤

Now let us relate Dγ〈f̈1, f̈1〉 and DγΦ.

Proposition 2.5. Suppose ḟ1, ∆f0, and ∆f1 are linearly independent. Then the following
equation holds:

Dγ〈f̈1, f̈1〉 = 2
(ḟ1, f̈1, ∆f0)(ḟ1, f̈1, ∆f1)

(ḟ1, ∆f0, ∆f1)2
DγΦ.

Proof. We restrict ourselves to the case of a point. Without loss of generality we assume
that Dγ ḟ1(t0) = 0 and Dγ∆f1(t0) = 0. So as we have seen before, there exists α such that

Dγ∆f0(t0) = αḟ1(t0)×∆f0(t0)

and hence

DγΦ(t0) = α
(
ḟ1(t0), ∆f0(t0), ∆f1(t0)

)
.

Let us calculate Dγ〈f̈1, f̈1〉 = 2〈Dγ f̈1, f̈1〉. Decompose

f̈1 =
(f̈1, ∆f0, ∆f1)

(ḟ1, ∆f0, ∆f1)
ḟ1 +

(ḟ1, f̈1, ∆f1)

(ḟ1, ∆f0, ∆f1)
∆f0 +

(ḟ1, ∆f0, f̈1)

(ḟ1, ∆f0, ∆f1)
∆f1.

Since 〈Dγ f̈1(t0), ḟ1(t0)
〉

= 0, and
〈Dγ f̈1(t0), ∆f1(t0)

〉
= 0,

we get

Dγ〈f̈1(t0), f̈1(t0)〉 = 2

(
ḟ1(t0), f̈1(t0), ∆f1(t0)

)
(
ḟ1(t0), ∆f0(t0), ∆f1(t0)

)〈Dγ f̈1(t0), ∆f0(t0)
〉
.

By Equation (8) we have
〈Dγ f̈1, ∆f0

〉
= −〈

f̈1,Dγ∆f0

〉
.
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Hence after the substitution of Dγ∆f0(t0) in the first summand one gets

〈Dγ f̈1, ∆f0

〉
= α

(
ḟ1(t0), f̈1(t0), ∆f0(t0)

)
=

(
ḟ1(t0), f̈1(t0), ∆f0(t0)

)
(
ḟ1(t0), ∆f0(t0), ∆f1(t0)

)DγΦ(t0).

Therefore, we obtain

Dγ〈f̈1(t0), f̈1(t0)〉 = 2

(
ḟ1(t0), f̈1(t0), ∆f1(t0)

)(
ḟ1(t0), f̈1(t0), ∆f0(t0)

)
(
ḟ1(t0), ∆f0(t0), ∆f1(t0)

)2 DγΦ(t0).

Since the statement does not depend on the choice of the basis and invariant under
isometries, we get the statement for all the points. ¤

We introduce the abbreviations

Φ1 = 〈∆f0, ∆f1〉 and Φ2 = 〈∆f1, ∆f2〉.
Let us show a formula of a discrete shift.

Corollary 2.6. (On discrete shift.) Suppose ḟ1, ∆f0, and ∆f1 are linearly independent.
Then the following holds:

DγΦ2(t) =

(
ḟ1(t), f̈1(t), ∆f0(t)

)
(
ḟ2(t), f̈2(t), ∆f2(t)

)
(
ḟ2(t), ∆f1(t), ∆f2(t)

)2

(
ḟ1(t), ∆f0(t), ∆f1(t)

)2DγΦ1(t).

Proof. The statement follows directly from Propositions 2.4 and 2.5. ¤

2.2. Infinitesimal flexibility of 3-ribbon surfaces. In this subsection we write down
the infinitesimal flexibility monodromy conditions for 3-ribbon surfaces (via continuous
shifts of Proposition 2.2 and discrete shifts of Corollary 2.6). Recall that

Λ(t) =

(
ḟ1(t), f̈1(t), ∆f0(t)

)
(
ḟ2(t), f̈2(t), ∆f2(t)

)
(
ḟ2(t), ∆f1(t), ∆f2(t)

)2

(
ḟ1(t), ∆f0(t), ∆f1(t)

)2 ,

and

Hi(t) =
(ḟi(t), ∆ḟi−1(t), ∆fi(t)) + (ḟi(t), ∆fi−1(t), ∆ḟi(t))

(ḟi(t), ∆fi−1(t), ∆fi(t))
, i = 1, 2.

Theorem 2.7. Consider a 3-ribbon surface f with linearly independent ḟ1, ∆f0, and ∆f1

at all admissible points. The surface f is infinitesimally flexible if and only if for any t1
and t2 in the interval [a, b] we have

Λ(t2) · exp
( t2∫

t1

H1(t)dt
)

= Λ(t1) · exp
( t2∫

t1

H2(t)dt
)
.
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Proof. By Corollary 2.6 we get relations between DγΦ1(ti) and DγΦ2(ti) for i = 1, 2. On
the other hand, Proposition 2.2 relates DγΦi(t1) and DγΦi(t2) for i = 1, 2. These four
relations define the monodromy condition for Φi that is the condition in the theorem and,
therefore, it holds if a surface is infinitesimally flexible.

Suppose now the condition holds. Then the flexion is uniquely defined by the value of
DγΦ1 at a point t0. ¤
Remark 2.8. Let us simplify the expressions for Λ and Hi performing the following nor-
malization for a fixed parameter λ. Denote

w0 = f1 − 1
(ḟ1,∆f0,∆f1)

∆f0;

w1 = f1;
w2 = f2;
w3 = f2 + 1

(ḟ2,∆f1,∆f2)
∆f2.

Here the semidiscrete surface f is flexible if and only if w is flexible. In addition for the
semidiscrete surface w we get(

ẇ1(t), ∆w0(t), ∆w1(t)
)

= 1 and
(
ẇ2(t), ∆w1(t), ∆w2(t)

)
= 1

for all arguments t. Therefore we get the expressions for Λ and Hi as follows:

Λ =

(
ẇ1, ẅ1, ∆w0

)
(
ẇ2, ẅ2, ∆w2

) ,

and
Hi = −(ẅi, ∆wi−1, ∆wi), i = 1, 2.

Notice that this expression holds momentary, i.e. only for a fixed time parameter λ, so it
cannot be use for finite deformations.

2.3. Higher order variational conditions of flexibility for 3-ribbon surfaces. In
this subsection we say a few words about higher order variational conditions of flexibil-
ity for 3-ribbon surfaces. We give an algorithm to rewrite these conditions in terms of
the coefficients of the infinitesimal flexion defined by the system of differential equations
(System A).

We introduce a further auxiliary function by letting

χ = Λ̇− (H2 −H1)Λ.

Corollary 2.9. A 3-ribbon surface is infinitesimally flexible if and only if the following
condition holds:

χ = 0.

Proof. This condition is obtained from the condition of Theorem 2.7 by differentiating
w.r.t t2 at the point t1. Therefore, these conditions are equivalent. ¤

From the infinitesimal flexibility condition of Corollary 2.9 one constructs many other
conditions of flexibility. If a 3-ribbon surface has a flexion, depending on a parameter λ,
then χ(λ) = 0 at all points. This implies the following statement.
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Proposition 2.10. If a 3-ribbon surface is flexible then for any positive integer m we
have

Dm
γ χ = 0,

where Dm
γ χ = ∂mχ

∂λm . ¤

Let us briefly describe a technique to calculate Dm
γ (χ).

Step 1. To simplify the expressions we write:

fi,1 = ḟi, fi,2 = ∆fi−1, fi,3 = ∆fi.

Further we let
fi,jk = 〈fi,j, fi,k〉, fi,jkl = (fi,j, fi,k, fi,l);
gi,jk =

〈Dγfi,j, fi,k

〉
, gi,jkl =

(Dγfi,j, fi,k, fi,l

)
.

Here we are interested in derivatives at an arbitrary value of a curve argument t but at a
fixed parameter of deformation λ = 0.

Note that gi,jkk = 0.
The functions fi,jk and fi,jkl are calculated from the initial data for the 3-ribbon sur-

face f .
Let us find the expressions for gi,jk. Without loss of generality we fix

Dγ ḟ1(a) = 0, Dγ∆f1(a) = 0, Dγ ḟ2(a) = 0, Dγ∆f0(a) = ḟ1(a)×∆f0(a),

and Dγ∆f0(a) = αḟ2(a)×∆f2(a)

for a starting point a. We find α from Corollary 2.6 (on discrete shift). First, we have

DγΦ1(a) = 〈ḟ1(a)×∆f0(a), ∆f1(a)〉 and DγΦ2(a) = α〈∆f1(a), ḟ2(a)×∆f2(a)〉.
Therefore, from Corollary 2.6 we have

α =

(
ḟ1(a), f̈1(a), ∆f0(a)

)
(
ḟ2(a), f̈2(a), ∆f2(a)

)
(
ḟ2(a), ∆f2(a), ∆f1(a)

)
(
ḟ1(a), ∆f0(a), ∆f1(a)

) .

All the functions gi,jk are found as the corresponding solutions of two systems of differential
equations (System A for i = 1, 2) according to Corollary 1.8. Since χ = 0, these solutions
are compatible.

For the functions gi,jkl we have

gi,jkl =
〈Dγfi,j, fi,k×fi,l

〉

=
(fi,k×fi,l, fi,2, fi,3)

fi,123

gi,j1+
(fi,1, fi,k×fi,l, fi,3)

fi,123

gi,j2+
(fi,1, fi,2, fi,k×fi,l)

fi,123

gi,j3.

To avoid cross products in the above expression we use Lagrange’s formula:

(a, b, c×d) = 〈a, b×(c×d)〉 = 〈a, c〈b, d〉−d〈a, b〉〉 = 〈a, c〉〈b, d〉 − 〈a, d〉〈a, b〉.
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Step 2. Define

fm
i,jk =

〈
f

(m)
i,j , fi,k

〉
, fm

i,jkl =
(
f

(m)
i,j , fi,k, fi,l

)
.

gm
i,jk =

〈
Dγf

(m)
i,j , fi,k

〉
, gm

i,jkl =
(
Dγf

(m)
i,j , fi,k, fi,l

)
.

As before, the functions fm
i,jk and fm

i,jkl are calculated from the initial data for the
3-ribbon surface f .

First, let us find the expressions for gm
i,jkl by induction on m.

Induction base. For m = 1 we get the formulae from Step 1.
Induction step. Suppose that we know the expressions for m let us find gm+1

i,jkl . We have

∂
(
gm−1

i,jkl

)

∂t
= gm

i,jkl +
(
Dγf

(m−1)
i,j , ḟi,k, fi,l

)
+

(
Dγf

(m−1)
i,j , fi,k, ḟi,l

)
.

The expression in the left hand part is a function that is known by induction. The last
two summands of the hand right part are also expressed inductively after rewriting ḟi,k,

and ḟi,l in the basis fi,1, fi,2, fi,3.

Secondly, decomposing Dγf
m
i,j in the basis fi,1, fi,2, fi,3 we get

gm
i,jk =

gm
i,j23fi,1k + gm

i,j31fi,2k + gm
i,j12fi,3k

fi,123

.

Step 3. Note that

〈
f

(m1)
i,j1

, f
(m2)
i,j2

〉
=

fm1
i,j123f

m2
i,j21 + fm1

i,j131f
m2
i,j22 + fm1

i,j112f
m2
i,j23

fi,123

,

〈
Dγf

(m1)
i,j1

, f
(m2)
i,j2

〉
=

gm1
i,j123f

m2
i,j21 + gm1

i,j131f
m2
i,j22 + gm1

i,j112f
m2
i,j23

fi,123

,

and

(
f

(m1)
i,j1

, f
(m2)
i,j2

, f
(m3)
i,j3

)
=

fm2
i,j112f

m3
i,j231

(fi,123)2
fm1

i,j332 +
fm2

i,j112f
m3
i,j223

(fi,123)2
fm1

i,j331 +
fm2

i,j123f
m3
i,j212

(fi,123)2
fm1

i,j313+

fm2
i,j123f

m3
i,j231

(fi,123)2
fm1

i,j312 +
fm2

i,j131f
m3
i,j212

(fi,123)2
fm1

i,j323 +
fm2

i,j131f
m3
i,j223

(fi,123)2
fm1

i,j321,

(
Dγf

(m1)
i,j1

, f
(m2)
i,j2

, f
(m3)
i,j3

)
=

fm2
i,j112f

m3
i,j231

(fi,123)2
gm1

i,j332 +
fm2

i,j112f
m3
i,j223

(fi,123)2
gm1

i,j331 +
fm2

i,j123f
m3
i,j212

(fi,123)2
gm1

i,j313+

fm2
i,j123f

m3
i,j231

(fi,123)2
gm1

i,j312 +
fm2

i,j131f
m3
i,j212

(fi,123)2
gm1

i,j323 +
fm2

i,j131f
m3
i,j223

(fi,123)2
gm1

i,j321.
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Proposition 2.11. Suppose that we get a rational polynomial expression T in variables
f ∗i,∗∗, f ∗i,∗∗∗, g∗i,∗∗, and g∗i,∗∗∗. Then DγT is also a rational polynomial expression in variables
f ∗i,∗∗, f ∗i,∗∗∗, g∗i,∗∗, and g∗i,∗∗∗.

Proof. Steps 1–3 give all the tools to write the expression for DγT explicitly. ¤

Proposition 2.12. For any positive integer m the function Dm
γ χ is a rational polynomial

expression in variables f ∗i,∗∗, f ∗i,∗∗∗, g∗i,∗∗, and g∗i,∗∗∗. ¤
Therefore, we can apply Steps 1–3 and Proposition 2.11 to calculate Dm

γ χ using induc-
tion on m.

We conclude this subsection with a few words on sufficient conditions for flexibility. We
start with an open problem.

Problem 1. Find a sufficient condition for flexibility of semidiscrete and n-ribbon sur-
faces.

For the case of 3-ribbon surfaces we have the following conjecture.

Conjecture 2. Consider a 3-ribbon surface f . Let Dm
γ χ = 0 for all non-negative integers

m (where D0
γχ = χ). Then f is locally flexible.

We also conjecture that it is enough to take only a finite number of these conditions.
Then the following question is actual: What is the number of independent conditions of
isometric deformation?

2.4. An n-ribbon surface and its 3-ribbon subsurfaces. Let us finally describe a
relation between (finite and infinitesimal) flexibility of n-ribbon surfaces and flexibility of
all 3-ribbon subsurfaces contained in them.

We start with theorem on infinitesimal flexibility.

Theorem 2.13. Consider an n-ribbon surface satisfying the genericity condition: ḟi,
∆fi−1, and ∆fi are not coplanar at any admissible point t0 and integer i. Then this
surface is infinitesimally flexible if and only if any 3-ribbon surface contained in the surface
is infinitesimally flexible.

Proof. The proof is straightforward. All the conditions for infinitesimal flexion are exactly
the conditions for 3-ribbon surfaces of Theorem 2.7. ¤

For the finite flexibility we have the following.

Theorem 2.14. Consider an n-ribbon surface satisfying the genericity condition: ḟi,
∆fi−1, and ∆fi are not coplanar at any admissible point t0 and integer i. Then this
surface is flexible if and only if any 3-ribbon surface contained in the surface is flexible.

Remark 2.15. We think of this theorem as of a semidiscrete analogue to the statement of
the paper [2] on conjugate nets and all (3 × 3)-meshes that they contain. In this paper
we do not study phenomena related to non-compactness and hence we restrict ourselves
to the case of compact n-ribbons surfaces.
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Proof. The “only if” part of the statement is straightforward. We prove the converse by
induction on the number of ribbons in a surface.

Induction base. By assumption any 3-ribbon subsurface contained in the surface is
flexible. It has one degree of freedom, since by Theorem 1.9 any 2-ribbon subsurface of a
3-ribbon surface has at most one degree of freedom, while the genericity condition holds
in a certain neighborhood of a starting position.

Induction step. Suppose we know that any k-ribbon subsurface is flexible and has one
degree of freedom in some neighborhood (for k ≥ 3).

Let us prove the statement for any (k+1)-ribbon subsurface. We consider a (k+1)-
ribbon subsurface as the union of two k-ribbon subsurfaces that intersect in a (k−1)-ribbon
subsurface. By the induction assumption this (k−1)-ribbon surface has one degree of
freedom compatible with the flexions of both k-ribbon subsurfaces. Therefore, the flexion
of the (k−1)-ribbon subsurface is uniquely extended to the both k-ribbon subsurfaces.
This implies flexibility of the (k+1)-ribbon with one degree of freedom. ¤

3. Flexions of developable semidiscrete surfaces

Suppose that all ribbons of a semidiscrete surface are developable, i.e. the vectors ḟi,
∆fi, and ḟi+1 are linearly dependent. We call such semidiscrete surfaces developable. In
this section we describe an additional property for flexions of developable semidiscrete
surfaces.

Proposition 3.1. Consider a developable 2-ribbon semidiscrete surface f . Let

∆fi(t) = ai(t)ḟi(t) + bi(t)ḟi+1(t)

for i = 0, 1. Then for the function Hi(t) we have

Hi(t) =
1

bi(t)
− 1

ai−1(t)
.

Proof. The expression is obtained from the expression in the definition of Hi (on page 20)
after the substitutions

∆fj(t) = aj(t)ḟj(t) + bj(t)ḟj+1(t) and ∆ḟj(t) = ḟj+1(t)− ḟj(t)

for j = i− 1, i. ¤

This fact gives a surprising corollary concerning the flexion of a 2-ribbon developable
surface. The degree of freedom for a flexion of a generic 2-ribbon developable surface is
1, as can easily be seen from the genericity condition for 2-ribbon surfaces. So a flexion is
unique up to the choice of a parameter. Denote by α(t) the angle between ∆f0 and ∆f1.

Corollary 3.2. Consider a flexion of a 2-ribbon developable surface f . Let us choose the
parameter γ of the flexion such that cos(α(t0)) changes linearly in γ. Then for any t the
value cos(α(t)) changes linearly in γ.
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Proof. Let f̂ be the 2-ribbon surface defined by

∆f̂0 =
∆f0

|∆f0| , f̂1 = f1, and ∆f̂1 =
∆f1

|∆f1| .

The 2-ribbon surface f̂ is in some sense a normalization of a surface f , so f̂ is devel-
opable, and the flexions for f̂ and for f coincide.

For the surface of f̂ we get

cos α = 〈∆f̂0, ∆f̂1〉 = Φ,

since |∆f̂0| = 1 and |∆f̂1| = 1. Now the statement of the corollary for f̂ follows from
Proposition 2.2 and the inner geometry expression of Proposition 3.1 for the function
under integration (that is actually H1).

Since f̂ is a normalization of f the statement of the corollary holds for f as well. ¤
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