NECESSARY FLEXIBILITY CONDITIONS OF SEMIDISCRETE
SURFACES

OLEG KARPENKOV

ABSTRACT. In this paper we study necessary conditions of flexibility for semidiscrete
surfaces. For 2-ribbon semidiscrete surfaces we prove their one-parametric finite flexibil-
ity. In particular we write down a system of differential equations describing flexions in
the case of existence. Further we find infinitesimal criterions of 3-ribbon flexibility. Fi-
nally, we discuss the relation between general semidiscrete surface flexibility and 3-ribbon

flexibility.
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INTRODUCTION

A mapping f : R x Z — R3, where the dependence on the continuous parameter is
smooth, is called a semidiscrete surface. Let us connect f(t,z) with f(t, z41) by segments
for all possible pares (t,z). The resulting piecewise smooth surface is a piecewise ruled
surface. In this paper we study infinitesimal and higher order flexibility conditions for such
semidiscrete surfaces. By flexions of a semidiscrete surface f we understand deformations
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that isometrically deform corresponding ruled surfaces and in addition that preserve all
line segments connecting f(t, z) with f(¢, z+1).

Many questions on discrete polyhedral surfaces have their origins in classical theory of
smooth surfaces. Flexibility is not an exception from this rule. The general theory of
flexibility of surfaces and polyhedra is discussed in the overview [11] by I. Kh. Sabitov.

In 1890 [1] L. Bianchi introduced a necessary and sufficient condition for the existence
of isometric deformations of a surface preserving some conjugate system (i.e., two inde-
pendent smooth fields of directions tangent to the surface), see also in [5]. Such surfaces
can be understood as certain limits of semidiscrete surfaces.

On the other hand, semidiscrete surfaces are themselves the limits of certain polygonal
surfaces (or meshes). For the discrete case of flexible meshes much is now known. We
refer the reader to [2], [9], [7], and [6] for some recent results in this area. For general
relations to the classical case see a recent book [3] by A. I. Bobenko and Yu. B. Suris. It
is interesting to notice that the flexibility conditions in the smooth case and the discrete
case are of a different nature. Currently there is no clear description of relations between
them in terms of limits.

The place of the study of semidiscrete surfaces is between the classical and the discrete
cases. Main concepts of semidiscrete theory are described by J. Wallner in [12], and [13].
Some problems related to isothermic semidiscrete surfaces are studied by C. Miiller in [§].

We investigate necessary conditions for existence of isometric deformations of semidis-
crete surfaces. To avoid pathological behavior related to noncompactness of semidiscrete
surfaces we restrict ourselves to compact subsets of the following type. An n-ribbon surface
is a mapping

f:a,b] x {O,...,n}—>R3, (i,t) — fi(t).
We also use the notion

Afz’@) = fz‘+1(t) - fz(t)

While working with a rather abstract semidiscrete or n-ribbon surface f we keep in
mind the two-dimensional piecewise-ruled surface associated to it (see Fig. 1).

In present paper we prove that any 2-ribbon surface (as a ruled surface) is flexible and
has one degree of freedom in the generic case (Theorem 1.15). This is quite surprising
since generic 1-ribbon surfaces have infinitely many degrees of freedom, see, for instance,
in [10], Theorem 5.3.10. We also find a system of differential equations for the deformation
of 2-ribbon surfaces (System A and Corollary 1.8). In contrast to that, a generic n-ribbon
surface is rigid for n > 3. For the case n = 3 we prove the following statement (see
Theorem 2.7 and Corollary 2.9).

Infinitesimal flexibility condition.
A 3-ribbon surface is infinitesimally flexible if and only if the following condition holds:

A = (Hy — H)A,
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FiGURE 1. A 3-ribbon surface.

where

_ (1, A0) (f0r Af1, Af)*
(f2, f2, AS2) (fl,AfO, Afl)27

and . . . .
(fi, Aficr, Afi) + (fi, Afica, Afi)
(fi7 Afi*h Afl)

Remark. Throughout this paper we denote the derivative with respect to variable t by

the dot symbol.

Hy(t) = L i=1,2.

Having this condition, we also show how to construct inductively the variational isomet-
ric conditions of higher orders. Finally, we show that an n-ribbon surface is infinitesimally
or finitely flexible if and only if all its 3-ribbon subsurfaces are infinitesimally or finitely
flexible (see Theorems 2.13 and 2.14). We say a few words in the case of developable
semidiscrete surfaces whose flexions have additional surprising properties.

Organization of the paper. In Section 1 we discuss flexibility of 2-ribbon surfaces.
We study infinitesimal flexibility questions for 2-ribbon surfaces in Subsections 1.2 and 1.3.
In Subsection 1.2 we give a system of differential equations for infinitesimal flexions, prove
the existence of nonzero solutions, and show that all the solutions are proportional to each
other. In Subsection 1.3 we define the variational operator of infinitesimal flexion which is
studied further in the context of finite flexibility for 2-ribbon surfaces. In Subsection 1.4 we
prove that a 2-ribbon surface is finitely flexible and has one degree of freedom if in general
position. In Section 2 we work with n-ribbon surfaces. Subsection 2.2 gives infinitesimal
flexibility conditions for 3-ribbon surfaces. Subsection 2.3 studies higher order variational
conditions for 3-ribbon surfaces. Finally, Subsection 2.4 shows the relations between
flexibility of n-ribbon surfaces and infinitesimal and flexibility of 3-ribbon subsurfaces
contained in it (in both infinitesimal and finite cases). We conclude the paper with
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flexibility of developable semidiscrete surfaces in Section 3. In this case flexions have
additional geometric properties.

Necessary notions and definitions. Within this paper we traditionally consider ¢
as a smooth argument of a semidiscrete surface f. The time parameter for deformations
is A

A perturbation of a semidiscrete (n-ribbon) surface is a smooth curve y(\) in the space
of all sufficiently smooth semidiscrete surfaces. We assume that the curve is parameterized
by A € [0, ¢] for some positive e such that v(0) = f.

Denote by D, f the infinitesimal perturbation of a semidiscrete (n-ribbon) surface f
along the curve v, i. e. the tangent vector %‘)\:0.

We say that a perturbation is a flexion if it does not change the inner geometry of the
surface obtained by joining all the pairs f;(t) and f;11(t) by straight segments. In the
case of semidiscrete (n-ribbon) surfaces a surface is flexible if the the following quantities

are preserved by the perturbation:

fil, |Afil, (fi Afic1), (fiu Af), and  (fi, fir1)

(for all possible 7 and ¢ in the case of an n-ribbon surface).

We say that an infinitesimal perturbation is an infinitesimal flexion if it does not change
the inner geometry of the surface infinitesimally. In other words, the first derivatives of
the quantities listed above are all equal to zero.

1. FINITE FLEXIBILITY OF 2-RIBBON SURFACES

In this section we describe flexions of 2-ribbon surfaces. Such surfaces are defined by
three curves fy, fi1, and fo. Our main goal here is to prove under some natural genericity
assumptions that any 2-ribbon surface is flexible and has one degree of freedom. Our
first point is to describe the system of differential equations (System A) that determines
infinitesimal flexions corresponding to finite flexions and find solutions to this system (see
Subsections 1.1 and 1.2). Further via solutions of System A we define the variational
operator of infinitesimal flexion V (in Subsection 1.3). Finally, to show finite flexibility of
2-ribbon surfaces we study Lipschitz properties for V (in Subsection 1.4).

1.1. Basic relations for infinitesimal flexions. In this small subsection we collect
some useful relations.
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Proposition 1.1. For any infinitesimal flexzion of a 2-ribbon surface f the following
properties hold:

(1) (f1, Dy fr) = 0;

(2) (fi — Afo, Dy fi — DyAfo) = 05
(3) (fi + Af1, Dy fi + DyAf1) = 0;
(4) (Afo, DA fo) + (A fo, DyASfo) =
(5) (Af1, D Af) + (AfiL, DyAS) =
(6) (f1, DyAfo) + (Dyf1, Afo) = 0;
(7) (fv, DyAS) + (Dyf1, Afr) = 0;
(8) (D, f1, Afo) + (f1, DA fo) = 0;
(9) (D, i, Af) + (fi. D, AfL) = 0.

Remark 1.2. For a semidiscrete or n-ribbon surface f and a C*-curve 7 the operations
D,, A, and 2 5; commute, so we do not pay attention to the order of these operations in
comp081t10ns

t

Proof. The first three equations follow from the fact that infinitesimal flexions preserve
the norm of tangent vectors to the curves fi, fo, and f.

The invariance of the lengths of A fo and A f; implies the fourth and the fifth equations.

Equations (6) and (7) follows from invariance of angles between the vectors f; and A f,
and the vectors f; and A fj.

Finally, the last two equations hold since the angles between Afy and f; and Af; and
f1 are preserved by infinitesimal flexions and therefore

8 0 :
875 <f1, Afo) = O and a’D’y<f1, Af1> = O
(in addition we use Equations (6) and (7) respectively). O

1.2. Infinitesimal flexibility of 2-ribbon surfaces. In this subsection we write down
a system of differential equations (System A) which describe infinitesimal flexions of a
2-ribbon surface in general position. We show the existence of infinitesimal flexions and
prove that they are proportional to each other (Theorem 1.9). Let

91 = (Dyf1, 1), 92 = (Dy f1, Afo), g5 = (D3 f1, Afr),
(10) 91 = (D, A fo, f_1>, 95 = (DyAfo, Afo), 96 = (DyAfo, Af1),
= (D,Af1, f1), g =(D,Af,Af), g9 = (D, Af1,Afh).
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Denote by System A the following system of differential equations

;.
g1 = 07
o (UuAfoAn) | (LAfo.A) (f1.Af0.8fo) (1A fouf)
2 = <,<f1,A,fo,Af1> (fl,Afo,Af1>>g2 T Fafesm® T hssan 96
gy = WGdhaw . | ((AfoA) (thfo,Afl))g _ hhan o
3 (Foafoam)?? U \(fuafoan) T (fuafoaf)) 73 (fafoaf)”®
- _ ((thfo,Afl) (fl,Afo,Af1)> _ (fLAfo,Afo) (f1.8f0.f1)
9a (Fbfodf) T (hafonf)) 927 (hafeam) P T (haf.an e
g5 = 07
g6 = — ((Af1,_Af0,f1XAfo)(fl,AfoAfl) _ LARLAXAR)(Afo. Ao AR) |
6 . |fuxAfol?(f1,Af0,Af1) [fixAfol?(f1,Af0,Af1)
(f1,AfoxAfo,Af1) + (f1xAfo,Afo,Af1) | (Af1,Af0,Af) _
[Fix A fol? T Rxafl? (hafonf) )92
(Af1,Afo,f1 XA fo) (f1,4 f0,A fo) + (/1A f0,AfoxAfo) _
1 fixAfoP(f1.Afo Ay T hxafp )BT
(frAfLfixAfo) (.00 Ao) _ (fr.Afo.fixAfo) (fl,AfoAfl))
AxALPLAf AR [hxAfl (hAfo.bf) ) 960
i _(thfl,Afl)gQ_ ((flaAf07Afl) (fLAfo,Afl))g + (f1.f1,A0) s
(fr.Af0.Af1): (frafonf) " (fafoaf)) 73T (fuafean)?®
N ((Afo,_Afl,fl><Af1)(f1,Af1,Af1) + UnafANXAR) _
98 (FIXANP(FLAT0,A ) T TAXAAP
((Afo,_Afl,flfol)(fl,AfoAfl) _ (b fo.fixAf)AALAA) |
o AhxAafP(fLAfAf) lfixAfi(f1,Af0,Af)
(FLAfixAfAf) | (ixAfAMLAL) (Afo,Afo,Af1)> _
TAxARE T AxAAE T (GuAfeah) )Y
((flAfo,flXAf})(thfl,Afl) _ nAfLAXAR) (flAfoAfl))
(A ARP(fLAfo. A1) Fix A2 (hAfoAf) ) 98
( 99 = 0.

Remark 1.3. In Proposition 2.2 below we show an explicit formula for the function gg+gs,
it is @ in our notation of Section 2.

Note also that g, + g4 = 0 and g3 + g7 = 0 in System A.

The remaining part of this subsection is dedicated to the proof of Theorem 1.9 on
the structure of the space of infinitesimal flexions. In Proposition 1.4 we show that any
infinitesimal flexion satisfies System A. Then in Proposition 1.6 we prove that any solution
of System A with certain initial data is an infinitesimal flexion. Finally, in Proposition 1.7
we show the uniqueness of the solution of System A for a given initial data. After that
we prove Theorem 1.9.

Let us show that any infinitesimal flexion satisfies System A.

Proposition 1.4. Let fi, Afy, and Afy be linearly independent. Then for any infinites-
imal flexion D, the functions g, ..., gy satisfy system A.

We start the proof with the following general lemma.
Lemma 1.5. For any infinitesimal flexion D., we have the equalities

g1 =95 =gy =0, 92+9+=0, and g3+ gr=0.
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Proof. The functions |fi], |Afy|, and |Afi| are infinitesimally preserved by infinitesimal
flexions, hence g1, gs, and go vanish. .

The invariance of angles between f; and Afy, and f; and Af; yield the equations
g2+ g4 = 0 and g3 + g7 = 0, respectively. 0

Proof of Proposition 1.4. From Lemma 1.5 the functions g;, g5, and g9 are equivalent
to zero, thus g1, g5, and g9 are equivalent to zero as well.

Let us prove the expression for g, and ¢3. Note that
g2 = <D'yf17Af0> + <Dwf1,Afo>-
Thus Equations (6) and (8) imply
92 = <D’Yf17 Af()) - <.]E17D’7Af0>'

To obtain the expression for ¢, rewrite Afy and f; in the basis consisting of vectors fi,
Afy, and Af;. The same strategy works for the functions gs.

Now we study expressions for g4 and ¢;. From Lemma 1.5 we know that g4 = —g» and
g7 = —g3 and hence g4 = —¢gs and §; = —g3. Therefore, the equations for ¢, and g; are
satisfied.

In order to get an expression for gg, we first note that Dv(fl, A fo, Afo) = 0, since the
function (f1, Afo, Afp) is an invariant of an infinitesimal flexion. So we get

(D, f1. Afo, Afo) + (fi. D Afo, Afo) + (fi, Afo, DA Sfo) = 0.

Rewrite

(fi, Afo, DyAfo) = —(Do fr, Afo, Afo) — (f1, DA fo, Afo)

= —(D,f1, Afox Afo) + (D, Afy, fi xAfo)

— _(BAfoxAfoAfodf) o JuBfoxAfoAN) 0 (JuBfo.BfoxAo) o
T (hAfonf) T T (RAfoAn) 92 (FAfof) 93
(f1xAfo,Af0,Af1) + (f1,f1xAfo,Af1) + (f1,Af0,f1xAfo)
FoAfodf) T4 T (i AfoAR) (FAfo.Af) 6

Second, we have

; _ N (AfoAfo A L (fuAfoAf) o (fL.Afo.Afo)
<D’YAfO7AfO> - <D’7Af0?A.f0> - (f17Af07Afl) g4 (fl,Af(),Afl)gB (fl,Af(),Afl)gG'

Third, we get

o ; iy (fuAJoAf) (1,8 f0,A fo)
(DyAfo, fi) = =Dy fr. Afo) = _<f'1,Af2,Afi)92 N <fi,AfZ,Af‘I>93‘
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Fourth,

: _ (AALAfo,fixAfo) g (f1,Af1,/1x A fo) :
(DyAfo, Afr) = TG g foxage) \PvJo fu) + (85 eago) (PvATo, Afo)+

_(frAfo.Af) (g ;
(f'l,lAfo,JO“'l ><A1f0) (f1, Ao, DA fo).

After a substitution of the four above expressions and simplifications we have

; _ {(AfAfo, XA (fLAf0.Af)  (fLAfLfXAf) (A fo,Afo,Af1)
<D7Af0’Af1> B ( |[f1x A fol2(f1.Afo0,Af1) |f1xAfol2(f1,Afo,Af1) t
(fL.AfoxAfo,Af1) (leA.foAfo,Afl)) _
[F1xD fo? Foxafolr )9

((Afl,Afo,flfoo)(f‘l,Afo,Af'o) I (fLAfo,AfOXAfo)) gs—
|fixAfol2(f1,A fo, Af1) |f1x A fo|? 3

((fl,Afl,f'lfoo>(f1,Afo,Af'o) (fl,Afo,fafoo)) 6.

|f1x Afol2(f1,Afo,Af1) |fixAfol?

Further, we get

F\ _ (AfLAfo,Af1) (f1.Af1,Af) (f1,Af0,Af1)
<D7Af0’ Af1> T (fu.Afo,Af1) ga (fi,AfoAﬁ)g5 T (f'l,Afo,Aﬁ)‘%’

From the last two identities, by substituting g5 = 0 and g4 = —go (see Lemma 1.5), we
obtain the expression for gg.
The expression for ¢g is calculated in a similar way. This concludes the proof. 0]

Further we prove that any solution of System A with certain initial data is an infini-
tesimal flexion.

Proposition 1.6. Let f be a 2-ribbon surface, f; : [a,b] — R? fori=0,1,2. Assume that

the function (f1, Afo, Afy) has no zeros on [a,b]. Then any infinitesimal perturbation D,
of f satisfying System A and the boundary conditions

Dwfl(a) =0, D,Afi(a) =0, and D,Afy(a)= afi(a)xAfola).
is an infinitesimal flexion.

Proof. By the definition of an infinitesimal flexion it is enough to check that the following
11 functions are preserved by the infinitesimal perturbation:

il AL e A (e Af), and (i fi)
(for all possible admissible 7).

Invariance 0f|f1|, A fol, |1Af1], (fl,Af0>, and <f1,Af1>.

From System A we have

91=0, g5=0, Gg9=0, Ga+g2=0, gr+g3=0,
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and hence all five functions under consideration are constants. So it is enough to show
that they vanish at some point: we show this at point a.

D,(fi(a), fi(a)) = 2(D, fi(a), fi(a)) = 2(0, fi(a)) = 0;
D, (Afo(a), Afo(a)) = 2(D,A foa), Afola)) = 2{afi(a)xAfo(a), Afo(a)) = 0;
7<Af1(a) Afi(a)) = 2(D,Afi(a), Afi(a)) = 2(0,Afi(a)) = 0;
D,(fi(a), Afo(a)) = (D, fi(a), Afo(a)) + (f1(a), ;A fola)) = (0, Afo(a))+
. (fi(a), afi(a)xAfo(a)) = 0;
D,(fi(a),Afi(a)) = <<

1(a
?fl( a), Afi(a)) + (fi(a), D,Afi(a)) = (0, Afo(a))+

fi(a),0) = 0.
Invariance of (fo, Afo) and (fo, Afy). Note that
(oo Afo) = =22 (A fo, M) + (1, ).

20t
Hence D, (fo, Afy) = 0. Similar reasoning shows that D, (fs, Afy) = 0.
Invariance of (fo, f1) and {f1, f2). Let us prove that Dﬁ,(f'o, f1) = 0. First, note that

(D, fo, f1) = (D f1, fr) — (DA fo, f1) = —(D,Afo, f1) = (DA fo, f1) — 8t<D Afo, f1).
Recall that 2 5(DyAfo, fi) = gu = —@o. Let us substitute the expression for g, from

System A and rewrite f; in the basis of vectors fi, Afy, and Af;. One obtains

. . (thfo,Afl) . (fl?Af()vAfO)
DA, = BB g o oa gy 4 U B0 B0)
e T NN L AT NN

= (D, f1,Afo) = — (D, f1, fo).

(D, fi, Af1) =

Hence

D, (fo, f1) = (D4 fo, f1) + (D4 /1, fo) = 0.
It follows that ( fo , f1) is invariant under the infinitesimal perturbation. The proof of the
invariance of (fi, f2) is analogous.

Invariance of (fo, f0> and (fQ, f2> Let us prove that Dy(f'o, f0> =0
D, (fo, fo) = 2(D- fo, fo) = 2(D,Afo, Afo) + 2D, (f1, fo) — 2(D, f1, f1)-
We have already shown that D.( fi, f0> =0 and (D, fi, f1> = 0. Hence

D'Y<f.07 f0> = 2<D’7Af07 Af0>
We rewrite the last Afy in the last expression in the basis fi, Afy, fixAfy and get
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(AfoAfo,leAfo P g (fi,Afo,fixAfo)
(DyAfo. Mo = G ian (Dro fi) + R piiag (D2 Ao Afo)+

_(AfyAf)
(fllefO,;l ><A0f0 <D Aan fl, Afo)

Let us rewrite (D, A fo, f1), (DyAfo, Afo), and (DVA]&O, fi, Afo) in terms of gy, ..., go.
First, we have:

<DwAfo7f1> = <D’Y.f07f1> = _<D7f17f0> = —<D7Jé1,AJéo>-
The second equality holds since we have shown that D, ( fo, f1) = 0. If we rewrite A f in
the basis f1, Afo, Afi, we get the following:

(f1,Af0,Af1) (f1,Af0,Afo)
(D-fo, f1) = T (hafo )2 T (fafonm I3

Second, we have

; _ i\ (Afo,Afo,Af) (1,8 f0,A fo)
(DyAfo, Afo) = —(DyAfo, Afo) = (f'l?Afo?Afl; 92— (fi,Afg,Af?)gﬁ‘

Third, with

— (D, Afo, Afy) =(DyAfo, Afr) = BLBSS) (D Ay )

(f1.Af1,.f1xAfo) (f1.0f0,Af1) : o
(f1.8fo,f1x A fo) <D Af[), Af0> (f1,Af0,f1xAfo) (D’YAf07 f1) AfO)

and the expression for gs from System A we get:
fg _ [ (AxAfoAfo.Af) | (fLAfoxAfo,Af1) _ (fu.Afo,AfoxAfo)
(D, A fos fr, Afo) = ( Fonfodf) T (Ao ) 92 = “(Fafonm BT

(f174f07f1XAfo)g
(f.Afo,Af) 76

Finally, we combine these three expressions and arrive at

(D Afo Af()) _ ( (Afo,Afo, frxAfo)(f,A00,A0) | (fr.Af0.fixAfo)(Afo,Afo,Af1)
)

(f1,Afo,fr x A fo)(f1,Afo,Af1) (f1.Afo,f1xAfo) (f1,Af0,Af1)

(fLAfo,Afo)(f1xAfo,Afo, A1) (fl,Afo,Afoxfl,Ajofoo,Afl)) 4
(f1,Afo,f1xAfo)(f1,Af0,Af1) (f1,Af0,fixAfo)(f1,Af0,Af1) 92

(_(AfoaﬁfmflXAfO)(fl,AfoAfo) _ (fl,Afo,Afw(ﬁ,Afo,Afofob)> g5+
(f1,Afo,fixAfo)(f1,Af0,Af1) (f1,Af0,fixAfo)(f1,Af0,Af1) 3

(_(fjl,Af‘o,fjlfooxfl,Afo,Af'o) (fl,Afo,A_fo)m,Afo,flfo‘o)) g
(f1.Afo,fixAfo)(f1,Af0.Af1) — (f1,Af0,f1xAfo)(f1.Af0,Af1) ’

It is clear that the coefficients of g3 and gg vanish identically. Let us study the coefficient

of ga. ) ) )
Consider the following mixed product (A fo, Afo, fixAfy), it is identical to zero. Let

us rewrite A fy in the second position of the mixed product in the basis fo, Afy, Afi. We
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get the relation

(AfoAfo. A1) (A £ 4§ (L. Ao A1) [ A f :
(f.LAf.O,AfS (Af(]?flaleAfO) + (fi—,Afo,Afi)(AfO’Afo’leAfO)

_ (fu.Afo,Afo) ; ;
- (thf(),Afl)(AfO’Afl’leAfO)

We apply this identity to the first two summands of the coefficient of g» and get the

following expression for the coefficient of go:

(flvAfoaAfO)(Af.Ov‘Afl:f.lXAfO) _ (flvAfOXAfO)Af1)§f17Af01AfO) _ (flXA.fovAf07Af1).(fl7Af01Af.0)
(f1,A fo,Af1)| fixAfol? (f1,A fo,Af1)| fxAfol? (f1,A fo,Af1)| frxAfo|?

We rewrite this as
Al AN (Afo, Af1, fix Afo)=(fi, Afox Afo, A= (fixAfo, Afo, Af)).
Let us study the expression in the brackets.

(Afo, Afv, ix Afo)=(fr, Afox Afo, Af1)=(fixAfo, Afo, Afr) =
—(Afox(f1><Af0) + fix(AfoxAfo) + Afox (Afox fi), Afl) = (0,Af1) =0.
The second equality holds by the Jacobi identity. Hence the coefficient of g, is zero.
Therefore,

D’y(an fo) = 2<D7Af07Afo> =0,
and ( fo, fo) is invariant under the i.nﬁmtesimal perturbation.
The proof of the invariance of (fs, fo) repeats the proof for {fo, fo).

So we have checked the invariance of all the 11 functions in the definition of an infini-
tesimal flexion. Hence the infinitesimal perturbation D, is an infinitesimal flexion. U

In the following proposition we prove that System A has a unique solution for any single
2-ribbon surface f (not for a deformation) and initial data for g; at one point f(ty). Recall
that ¢ is an argument of f.

Proposition 1.7. Let f be a 2-ribbon surface, f; : [a,b] — R?® for i = 0,1,2. For any
collection of initial data g;(ty) = ¢; there ezists a unique solution of System A. This
solution 1s extended for all t < Ty, where

Ty =min {T >ty | (fi(T), Afo(T), Afi(T)) = 0}.

Proof. The system of differential equations for tg < t < Tj is a system of homogeneous
linear equations with variable coefficients and hence for any collection of initial data it
has a unique solution. O

The initial conditions of the last proposition can be reformulated in terms of infinitesi-
mal flexion D, f1 at a single point ¢ itself.

Corollary 1.8. Let f be a 2-ribbon surface, f; : |a,b] — R® for i = 0,1,2. For any
collection of initial data

D“/fl(to) = Uy, D’yAfO(tO) = U2, and D’YAfl(tO) = Us.
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there exists a unique solution of System A. This solution is extended for all t < Ty, where
Ty =min {T > to | (fi(T), Afo(T), Afi(T)) = 0}.

Proof. The corollary follows directly from Proposition 1.7 after obtaining the ”initial val-
ues ¢;” from the vectors v;:

C1 = <Ul,f:1>, Co = <U1,Af0>, C3 = <U1>Af1>7
Cq4 = <v2af:l>7 Cs = <U2?Af0>> Ce = <U27Afl>?
cr=(v3, f1), cs=(v3,Af0), o= (v3,Af1).

O

Now we have all the ingredients to prove the general theorem on the structure of the
space of infinitesimal flexions.

Theorem 1.9. Consider a 2-ribbon surface defined by curves f; : [a,b] — R3 for i =
0,1,2, where fy and fy are Cl-smooth and f, is C*-smooth. Assume that the function
(fl, Afo, Af1) has no zeroes on [a,b]. The space of infinitesimal flexions of such surfaces
(up to isometries) is one-dimensional.

Proof. Uniqueness. Any infinitesimal flexion is isometrically equivalent to an infinitesimal
flexion which satisfies

D,fi(a) =0, D,Afi(a)=0, and D,Afy(a) = afi(a)xAfola).

Consider functions g; defined by Equations (10). By Proposition 1.4 these functions satisfy
System A. Hence by Corollary 1.8, the functions g; are uniquely defined by f and the initial
conditions for infinitesimal flexions. Recall that elements of an arbitrary Euclidean vector
v = (1, 2, c3) are uniquely determined by its scalar products with an arbitrary basis:

c1 (e1,e1) (er,e2) (eq,e3) -1 (e1,v)
ca | = | (e2,e1) (ea,e2) (ea,e3) (e2,v)
c3 (e3,e1) (es e2) (es;e3) (es,v)

Therefore, the infinitesimal flexion is uniquely defined by the functions g;. Hence the
dimension of infinitesimal flexions is at most one (the parameter - is the unique parameter
of this flexion).

FExistence. By Corollary 1.8 there exists an infinitesimal deformation satisfying system
A and the initial values

D,fi(a) =0, D,Afi(a)=0, and D,Afy(a)= fi(a)xAfy(a).

By Proposition 1.6 this infinitesimal deformation is an infinitesimal flexion. Since the
function (f1, Afo, Afi) has no zeroes, fi(a)xAfy(a) is a nonzero vector and hence the
infinitesimal deformation is nonvanishing. U
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1.3. Variational operator of infinitesimal flexions. Let us fix an orthonormal basis
(€1, €2, e3) in R3. Suppose that we know the coordinates of a 2-ribbon surface f : [a, b] x
{0,1,2} — R3 in this basis. Denote the coordinate functions for fi, Afy, and Af; as
follows

fl(t) = (hl(t)a h2(t)7 h3<t))7 AfO(t) = (h4(t)7 hS(t)7 hﬁ(t))7 Afl(t) = (h7(t>7h8(t)7 hg(t))
Denote by Qf the Banach space (C'[a, b])? with the norm
|(h1,..., ho)|| = {giagg(max(sup |hi], sup \hl\))

Note that any 2-ribbon surface f is defined by the curves fi, Afy, and Af; up to a
translation. So the space ) is actually the space of all 2-ribbon surfaces with one endpoint
fixed, say fi(a) = (0,0,0).
We say that a point h = (hy, ..., hg) is in general position if the determinant
hi ho hs
det ]’L4 h5 h6 % 0

hr hs hg

for any point in the segment [a, b]. This condition obviously corresponds to

(f1, Afo, Af1) #0.

Definition 1.10. Denote by V : [0, A] x Q§ — QJ the variational operator of infinitesimal
flexion in coordinates (hq, ..., hg):

em, Afo, A
Vi—1)4+m (A, h) = ( - fo. A)
(11) (f17Af07Af1)
(fh Aan em)
(f17 Afo: Afl)
for (1 <1,m < 3). Here gi(h),...,g9(h) is a solution of System A at point f with the
initial conditions corresponding to

D,fi(a) =0, D,Afi(a)=0, and D,Afo(a) = fi(a)xAf(a),

(fl, €m, Afl)
(f1,Afo, Af1)

g3i-1)+1(h) + g31-1)+2(h)+

93(171)+3(h)-

gl(a> = 07 92(a’> = 07 93(0’) = 07.
g4(a) =Y, 95((1) = 07 gﬁ(a) = ( 1(@),Af0(&),Af1(a>>,
g?(a) =Y, 98(&) =Y, 99(a) =0.
Note that the variational operator of infinitesimal flexion V is autonomous, it does not
depend on time parameter .

Remark 1.11. Let us show in brief how to find the coordinates of the perturbation D, f
in the basis ey, s, e3 satisfying

D, fi(a) =0, Dwfl(a) =0, D, Afo(a) = fl(a)foo(a), and D,Afi(a) = 0.
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First, one should solve System A with the above initial data, then substitute the obtained
solution (gi,...,g9) to Equations (11). Now we have the coordinates of D, f1, D,Afy,
and D, A f;. Having the additional condition D, f;(0) = 0 one can construct D, f1, D, fo,
and D, fs:

D, fi(to) = /val(t)d(t)u D, fo=D,f1 —D,Afy, D,f2=D,f +D,Afr.

1.4. Finite flexibility of 2-ribbon surfaces. In previous subsection we showed that
any 2-ribbon surface in general position is infinitesimally flexible and the space of its
infinitesimal flexions is one-dimensional. The aim of this subsection is to show that a
2-ribbon surface in general position is flexible and has one degree of freedom.

We start with the discussion of the initial value problem for the following differential
equation on the set of all points €} in general position (here \ is the time parameter):

oh
7y = VO h).

To solve the initial value problem we study local Lipschitz properties for V.

Definition 1.12. Consider a Banach space F with a norm | * |g and let U be a subset
of [0,A] x E. We say that a functional F : U — FE locally satisfies a Lipschitz condition
if for any point (Mg, p) in U there exist a neighborhood V' of the point and a constant K
such that for any pair of points (A, p;) and (A, ps) in V' the inequality

|[F(A\p1) = F(\,p2)|le < Klpr — pole
holds.

First we verify a Lipschitz condition for the following operator. Define G : [0, A] x Q§ —
Qg by
gz<)\ah) :.QZ(h)7 L= 17797
where g;(h) are defined by Equations (10).

Lemma 1.13. The functional G locally satisfies a Lipschitz condition at any point in
general position.

Proof. Consider a point h € U. The element (gi,. .., gy) itself satisfies a linear system of
differential equations (System A). The coefficients of this system depend only on a point
of Qf. Since the point h is in general position, there exists an integer constant K such
that for a sufficiently small neighborhood V}, of h the dependence is K-Lipschitz, i.e., for
p and g from V}, all the coefficients satisfy the inequality

|e(p) — (@) < Kllp = qll.
Hence the solutions for ¢ € [a, b] satisfy the Lipschitz condition on V}, as well: for some
constants K; we have

sup(|gi(p) — i(@)]) < Killp—qll, 1=1,....9.
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From System A we know that the g; linearly depend on gy, ..., go, therefore, we get the
Lipschitz condition for the derivatives: for some constants K; we have

sup(|9u(p) — qu(a)l) < Killp —all, 1=1,....9.

Thus there exists a real number A such that for all points p and ¢ in Vj,,
IG(A\.p) = G\ q)]| = max (max (sup | (p) — gu(a)]. sup |9:(p) — du(a)])) < Kllp — qll.
Therefore, G satisfies a Lipschitz condition on V. O
Lemma 1.13 and Expression (11) directly imply the following statement.

Corollary 1.14. The functional V locally satisfies a Lipschitz condition at points in gen-
eral position. [l

Now we prove the following theorem on finite flexibility of 2-ribbon surfaces in general
position.

Theorem 1.15. Consider a 2-ribbon surface defined by a C?-curve f; and C*-curves fo
and fo defined on a segment [a,b]. Assume that (f1, Afo, Af1) does not have zeros on
la,b]. Then the set of all flexions of such surface (up to isometries) is one-dimensional.

Proof. As we show in Corollary 1.14, the operator V satisfies a Lipschitz condition in
some neighborhood of the point p related to fi, Afy, and Af;. From the general theory
of differential equations on Banach spaces (see for instance the first section of the second
chapter of [4]) it follows that this condition implies local existence and uniqueness of a
solution of the initial value problem for the following differential equation

oh

in some neighborhood of A.
Since the 2-ribbon surface (fo, f1, f2) with a fixed endpoint fy(a) is uniquely defined by
(f1,Af0, Af1) € QF, we get the statement of the theorem. O

2. FLEXIBILITY OF n-RIBBON SURFACES

In this section we study necessary flexibility conditions of n-ribbon surfaces. We find
these conditions for 3-ribbon surfaces, and we show how they are related to the conditions
for n-ribbon surfaces.

2.1. Preliminary statements on infinitesimal flexion of 3-ribbon surfaces. In this
subsection we prove certain relations that we further use in the proof of the statement on
infinitesimal flexibility conditions for 3-ribbon surfaces.

Remark 2.1. As we have shown in Section 1 the notions of finite flexibility and infinitesimal
flexibility coincide for the 2-ribbon case. Still in this subsection we say infinitesimal
flexions of a 2-ribbon surface to indicate that an infinitesimal flexion of an n-ribbon
surface coincides with finite flexions of all its 2-ribbon surfaces.
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Consider the following function

= <Af0, Af 1>-
This function plays a central role in our further description of the flexibility conditions
of 3-ribbon and n-ribbon surfaces (see Theorem 2.7 and Theorem 2.13). Let D, ® be the
infinitesimal flexion of ®. Via this function we describe monodromy conditions for finite
flexibility. Proposition 2.2 and Corollary 2.6 deliver necessary tools to describe continuous
and discrete parts of the monodromy condition on .

2.1.1. Continuous shift. Here we study the dependence of the infinitesimal flexion D,®
on the argument ¢.

Proposition 2.2. (On continuous shift.) Suppose f1, Afo, and Afy are linearly in-
dependent on the segment [ty,t2]. Then for an infinitesimal flexion D.,® the following
condition holds:

D, ®(ty) = D, d(t) - exp / (flaAfo,(?lfli . (il}ﬁfo,Afl) ,

t1

This is a direct consequence of the next lemma.
Lemma 2.3. Let f1, Afy, and Afy be linearly independent, then we have

fl; Afo, Afl) + (fb AfO:Afl)D P
(f1, Afo, Afy) ”'

bez(

Proof. Note that

D,® = <D7Af'0,Af1> + (AfO,DvAf_l), and ‘

D,® = (D,Afo, Af1) + (D, Afo, Afr) + (Afo, DyAf1) + (Afo, DA f1).
Let us prove the statement of the lemma for an arbitrary point t5. Without loss of
generality we fix D, fi(tg) = 0 and D,Afi(tg) = 0 (this is possible since any flexion is
isometric to a flexion with such properties and isometries of flexions do not change the

functions in the formula of the lemma). Then D, A fo(t,) is proportional to f;(to) x A fo(to),
and hence there exists some real number a with

D, A fo(to) = afi(to) x A fo(to).
Thus we immediately get
D, ®(tg) = (DA fo(t), Afi(t)) = Oé(fl(to),Afo(to),Afl(to))-

Let us express the summands for D, ®(t,). We start with (D,A folto), Afy (to)). First we
note that

(i) Afy = (Afi, Afo, ixAfo) ;

f + (fl?Af17f1XAf0) f (flaAf07A.fl)

; n 1 0+ : n
<f1>Af07f1XAf0) (fl?Af()vleAfO) (fl,AfmleAfo)
Equation (6) implies

(ii) (D, Afolto), f1(to) ) = —<D7f1 (to), Afol(to) ) = —<0,Af0(t0)> =0.

f1><Af0-
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From Equation (4) we have
(iii) (D, Afolto), Afolto)) = —(DAfolto), Afo(te)) = —a(fi(te), Afolto), Afolto)).
The function (A fo, f1, A fo) is invariant of an infinitesimal flexion, therefore:

(D, Afo, f1, Afo) + (Afo, Do fr, Afo) + (Ao, f1,D,Afo) =0,
and hence

(iv) (DA folto), fi(to)xAfolto)) = —(Afo<to), fl(.tO)uD'y‘Afb(tO))
= —a(Afo(t), filto): fi(to) xAfo(to))-

Now we decompose A fo(to) in the last formula in the basis of vectors fi(to), Afo(to), and
Afl (to):

f1(to),Afo(to),Af1(to

) )
f1(to),Afo(to),Af1(to
) )
) )

f1(to),Afo(to),Afolto
(fl(to JAfo(to),Afi(to

(AfO(tO)afl(tO) Fito) X A fo( to))= E
(

(Afi(t), filto), filto)x A fo(to)).

3 (A folte), fi(to), fi(to)xAfo(to))+
) (A
)

Therefore, after substitution (i) of Afy we apply (ii), (iii), (iv), and the last expression

and get

—a (f‘l(to)ﬁﬁfl(to)vfl(to)XAfo(to))
(fl(to):Afo(to):fl(to)XAfo(to))

(f1(t0),Afo(t0)7Af1(t0)) : :
Afolto), to), to) XA folte)) —
ALSOSI) (3 o). it 1)< Aol

(1 (t0),2fo (10). A fo 40)) : :
Afi(to), f1(to), f1(to) X Afo(t
(f.l(to)Afo(to),ﬁ(to)XAfo(to)) fl( 0) fl( 0) fl( 0) fO( 0))

— —a(fi(te), Afa(to), Afo(to)).-

(D, Afolto), Afi(to)) =

Similar calculations for the summand (A fy(to), Dy A fi (to)) (applying Equations (3), (5),
and (7) and the conditions D, f1(tg) = 0 and D,Af(ty) = 0) show that

(Afolto), DyAfi(to)) = 0.
Further we have

(DA folto), Afi(t)) = a(fi(ta), Afolte), Afa(to)),
(Afo(to), DyAfi(to)) = 0.

Therefore,
D, (to) = a((fi(to), Afolte), Afi(to)) + (fi(to), Afo(to), Afi(to))),
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and consequently
(f1(to), Afolto), Afi(to)) + (fito), Afo(to), Afi(to))

(fl(t0)7 Afolto), Afi (to))
Thus Lemma 2.3 holds for all possible values of t,. O

Dvd)(%) =

D, D(to).

2.1.2. Discrete shift. Any 3-ribbon surface contain 2-ribbon surfaces as a subsurfaces.
Each of them has an infinitesimal flexion D,®; (i = 1,2). Here we show the relation
between D, ®; and D,®, for the same values of argument t.

First, in Proposition 2.4 we show a relation for D, (f, fi) and D,(fa, fo). Second, in
Proposition 2.5 we give a link between D, (fy, f1) and D, ®;. This will result in the formula
of Corollary 2.6 on the relation between D,®; and D <I>2

We start with a formula expressing D.,( fa, f2> via D, fi, f1>
Proposition 2.4. We have the following equation:

Do, fo) = %

Proof. We do calculations at a point ¢, again assuming that D, fi(te) = 0 and D, Afi(ty) =
0 (by choosing an appropriate isometric representative of the deformation). Let us show
that D, fo(to) = 0. First, note that

D, fo(to) = D, fi(to) + Dy Afi(to) = Dy A fi(to).
Secondly we show that the inner products of D,Af;(to) and the vectors fi(to), Afi(to),

and fi(to)xAfi(to) are all zero (this would imply that D,VAfl (to) =0).
From Equation (7) we have

(D, Afi(to), fi(to)) = —(D, fi(to), Afi(to)) = —(0, Afi(to)) = 0.

Further, from Equations (5), we get
<D7Af“1(t0>, Af1<t0)> - —<D7Af1(t0), Afl(t0)> - 0

Finally, from the equation D, ( fi,Af, A fl) = 0 we obtain

(DA fi(to), fi(to)xAfi(to)) = '

(Afl(to) 'yfl(to) Afl(to)) (Afl(to) fl(to),Dqul(tO» = 0.
Therefore, D, Af;(to) = 0, and hence D, f,(to) = 0.
From Equation (1) and Equation (9) we get

<va1 (to), f1(to)) = (D, f1(to), fi(ta)) — (f1(to), wfl(t0)> =0—(fi(ty),0) =0
(D, fi(to), Afi(to >_ —(fi(to), D, Afi(to)) = —<f1 to),0) = 0.

Therefore, for some real number (3; we have

D, fi(to) = B fi(to) x A fi(to).

Dw<f17f1>'
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By a similar reasoning (since we have shown that D, fa(ty) = 0) we get

Dwfé(to) = Bafa(to) x Afi(to).
Since £ ( (fl, Afl,fg)) = 0, at point ¢, we have

(D, f1(to), Afi(to), f2(to)) + (fi(to), Afi(to), Dy falto)) = 0.

Hence,

Bi(fi(to) < A fi(to), Afi(to), fato)) + Ba(fi(to)s Afi(to), folto) x Afi(te)) = 0,
and, therefore 3, = 5. This implies

D, {fi(to), fi(to)) = 2(D, fi(to), f(to)) = 261 (f1(te), Af1(to), fi(to))
and
D { fo(to), falto)) = 281 (fa(to), Afi(to), fo(to))-

The last two formulas imply the statement of Proposition 2.4. O
Now let us relate D, (fy, fi) and D, ®.

Proposition 2.5. Suppose f1, Afy, and Afy are linearly independent. Then the following
equation holds:

(flaflaAfO)(flafl?Afl) .
(Fodfudfp

Proof. We restrict ourselves to the case of a point. Without loss of generality we assume
that D, f1(to) = 0 and D, Afi(tg) = 0. So as we have seen before, there exists a such that

DA fo(to) = aufi(to) x A fo(to)

D’Y(fh.f) -

and hence .
D, ®(ty) = Oé(fl(to),Afo(to), Afl(to))-
Let us calculate D, (f1, fi) = 2(D, f1, f1). Decompose

. (fi,Afo, AF) (fi. fi Af1) (f1, Afo, f1)
h= <f'1,Afo,Af1>f e an) T o an S
Since
(D1 fito), f1(to)) =0, and (D, fi(to), Afi(to)) =0,
we get

5 (f1(to), fi(to), Afi(to))

' FLlto), A fo(to)).
(filto), Afolto), Afi(to)) (D, fi(to), Afolto))

D, {(fi(to), fi(to)) =
By Equation (8) we have
<D’yf17 AfO> - —<f1, DWAf0>,
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Hence after the substitution of D,A fy(ty) in the first summand one gets

(f1 (to), f1(to), Afo(to))
(f1(t0), Afolto), Afr(to))

(Do f1, Afo) = a(filto), filta), Afolto)) = D, ®(ty).

Therefore, we obtain

Fito), fi(to), Afi(to)) (fi(to), fi(to), Afo(to))
(f1(to), Afo(to), Afi(to))”

Since the statement does not depend on the choice of the basis and invariant under
isometries, we get the statement for all the points. 0

Dw<f1(to)>f1(to)> = 2( D, D(to).

We introduce the abbreviations
d, = <Af0,Af1> and oy = <Af1,Af2>-
Let us show a formula of a discrete shift.

Corollary 2.6. (On discrete shift.) Suppose f1, Afo, and Afy are linearly independent.
Then the following holds:

(f1(6), A1), Af(®) (fo(t). AR, A1)
(f2(t), Fo(8), Afa(®)) (f(t), Afolt), Afa(8))

Proof. The statement follows directly from Propositions 2.4 and 2.5. U

D, Dy(t) =

D, dy(t).

2.2. Infinitesimal flexibility of 3-ribbon surfaces. In this subsection we write down
the infinitesimal flexibility monodromy conditions for 3-ribbon surfaces (via continuous
shifts of Proposition 2.2 and discrete shifts of Corollary 2.6). Recall that

(H1(0), 1(6), Afo(®) (fo(0). A1), Afo(t)”
(f2(t), f2(2), Afa(t)) (fl(t), Afo(t), Afl(t))z’

At) =

and
Hilt) = (fl-(t),AfH(t)', Afi(t)) + (fi(t),AfH(t),Afi(t))7 i=10
(fit), Afiza(t), Afi(t))

Theorem 2.7. Consider a 3-ribbon surface f with linearly independent fl, Afo, and Afy
at all admissible points. The surface f is infinitesimally flexible if and only if for any t,
and ty in the interval [a,b] we have

A(ts) ~exp(/2H1(t)dt) — A(t) ~exp</2H2(t)dt).
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Proof. By Corollary 2.6 we get relations between D, ®4(t;) and D, Ps(t;) for i = 1,2. On
the other hand, Proposition 2.2 relates D, ®;(t1) and D,®;(t2) for ¢ = 1,2. These four
relations define the monodromy condition for ®; that is the condition in the theorem and,
therefore, it holds if a surface is infinitesimally flexible.

Suppose now the condition holds. Then the flexion is uniquely defined by the value of
D, ®; at a point £,. [

Remark 2.8. Let us simplify the expressions for A and H; performing the following nor-
malization for a fixed parameter A. Denote

N | :
Wo = fi = ragam Ao

wy = f1;
wy = fo; .
Ws = f2 * (f2,Af1,Af2)Af2'

Here the semidiscrete surface f is flexible if and only if w is flexible. In addition for the
semidiscrete surface w we get

(u)l (t), A'LUo(t), Aw1 (t)) =1 and (’LU2 (t), Aw1 (t), Awg(t)) =1
for all arguments t. Therefore we get the expressions for A and H; as follows:

A= (wla wl? AU)O)
(w27 w27 AwZ) ’
and
HZ' = —(wl, Awi—h Awl), 1= 1, 2.
Notice that this expression holds momentary, i.e. only for a fixed time parameter X, so it
cannot be use for finite deformations.

2.3. Higher order variational conditions of flexibility for 3-ribbon surfaces. In
this subsection we say a few words about higher order variational conditions of flexibil-
ity for 3-ribbon surfaces. We give an algorithm to rewrite these conditions in terms of
the coefficients of the infinitesimal flexion defined by the system of differential equations
(System A).

We introduce a further auxiliary function by letting

Corollary 2.9. A 3-ribbon surface is infinitesimally flexible if and only if the following
condition holds:

x = 0.
Proof. This condition is obtained from the condition of Theorem 2.7 by differentiating
w.r.t to at the point ¢;. Therefore, these conditions are equivalent. [l

From the infinitesimal flexibility condition of Corollary 2.9 one constructs many other
conditions of flexibility. If a 3-ribbon surface has a flexion, depending on a parameter A,
then y(A) = 0 at all points. This implies the following statement.
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Proposition 2.10. If a 3-ribbon surface is flexible then for any positive integer m we
have

Dl'x =0,

m,, _ 9"x
where DX = G5 0

Let us briefly describe a technique to calculate DI (x).
Step 1. To simplify the expressions we write:

fir="1i,  fiz=A4Afia, fis=Af
Further we let
figk = {figs fir), figet = (figs firr fia);
ik = <D'yfi,j>fi,k>a ikl = (D'yfi,ja Jiks fi,l)-
Here we are interested in derivatives at an arbitrary value of a curve argument ¢ but at a
fixed parameter of deformation A = 0.
Note that g; jxx = 0.
The functions f; jx and f; jr are calculated from the initial data for the 3-ribbon sur-
face f.
Let us find the expressions for g; ;. Without loss of generality we fix

D,fi(a) =0, D,Afi(a) =0, D,fala) =0, DyAfo(a) = fia)xAfo(a),
and D,Afo(a) = afo(a)xAfs(a)

for a starting point a. We find a from Corollary 2.6 (on discrete shift). First, we have

D,®,(a) = (fi(a)xAfo(a),Afi(a)) and D, dy(a) = a{Afi(a), f2(a)xAfa(a)).

Therefore, from Corollary 2.6 we have

(fl(a)vfl(a)aAfO(a)) (fQ(a),Afg(a),Afl(a))
(fg(a),fQ(a),AfQ(a)) (fl(a>>Af0<a)7Af1(a))
All the functions g; j are found as the corresponding solutions of two systems of differential
equations (System A for i = 1,2) according to Corollary 1.8. Since x = 0, these solutions

are compatible.
For the functions g; ji; we have

Gi gkl = <D'yfz',j7 fi,kxfi,l>
~ (firxfigs fi2, fi3) (fir, fiex fig, fis) (fix, fiz, firx fi1)
= i1t Gi g2t Gi,j3-
fin23 finos finos

To avoid cross products in the above expression we use Lagrange’s formula:

(a,b,cxd) = {a,bx(exd)) = (a,c(b,d)—d(a,b)) = (a,c)(b,d) — {(a,d){a,b).
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Step 2. Define

Q@k: fz] ’fZ >’ fzr,r_;kl
9k = ’Yfi(,j 7fi,k>7 ik

As before, the functions f; and [, are

23

= (£, Fis fir)
D’y 1(77;1)7 fi,k7 fi,l) .

calculated from the initial data for the

3-ribbon surface f.
First, let us find the expressions for g;", by induction on m.
Induction base. For m = 1 we get the formulae from Step 1.

Induction step. Suppose that we know the expressions for m let us find gm+1 We have
a(gln 'zll) m - m—1
— I = g+ (DAY fo fua) + (Do, funs i)

The expression in the left hand part is a function that is known by induction. The last
two summands of the hand right part are also expressed inductively after rewriting f; x,
and f;; in the basis f;1, fi2, fis-

Secondly, decomposing D, f”; in the basis f;1, fi2, fiz we get

9i ]23fZ 1k + gz,j31fl 2k + gz,]12f1 3k
f’L 123

m
g; gk =

Step 3. Note that
Jigiastigo1 + Jijisifigae + f,3112f7323

(P, £y =

fz 123
< f (m2)> :g:f;1123f J21 1]131f ]22 zg112f ]23
Y ».]1 ’ 2,2 f1,123
and
(f.(ml) f f )_f J112f 3231f + fj112f 1223f + f]123f 3212fm1 +
4,71 ]2 > J 4,3 (fz 123 ) ,J332 (fz 123 ) ,Ja31 (fz 123 ) ,J313
f,J123f73231f + f’]131f7]212f + f7J131f,J223 fm1
(fin23)? 512 (fin23)? 3529 (finnz)? TH7320
( ml) f f ) :f’]112f7.7231 mi _|_ f7]112f7.7223 mi + f:.]123f7]212 mi _I__
i,J1 l]2 AN E] (fz 123 ) 1,J332 (fz 123) 12,7331 (.fz 123 ) 14,7313
f»]123f73231 mi f73131f,1212 my f,J131f,Jz23 mi
1,J312 v 1,J323 T o i,j321"

(f1,123> (f2,12 ) (fz,123>
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Proposition 2.11. Suppose that we get a rational polynomial expression T in variables

Jiwer Jisnr Ginsr and g . Then DT is also a rational polynomial expression in variables
* * * *
Gykk ) J g kskk ) gi,**i cmd gi,***'

Proof. Steps 1-3 give all the tools to write the expression for D, T explicitly. ([l

Proposition 2.12. For any positive integer m the function D'x is a rational polynomial

*

expression in variables ... [For Gfwes aNA GF oy OJ

Therefore, we can apply Steps 1-3 and Proposition 2.11 to calculate D' using induc-
tion on m.

We conclude this subsection with a few words on sufficient conditions for flexibility. We
start with an open problem.

Problem 1. Find a sufficient condition for flexibility of semidiscrete and n-ribbon sur-
faces.

For the case of 3-ribbon surfaces we have the following conjecture.

Conjecture 2. Consider a 3-ribbon surface f. Let D"y = 0 for all non-negative integers
m (where D)y = x). Then f is locally flexible.

We also conjecture that it is enough to take only a finite number of these conditions.
Then the following question is actual: What is the number of independent conditions of
1sometric deformation?

2.4. An n-ribbon surface and its 3-ribbon subsurfaces. Let us finally describe a
relation between (finite and infinitesimal) flexibility of n-ribbon surfaces and flexibility of
all 3-ribbon subsurfaces contained in them.

We start with theorem on infinitesimal flexibility.

Theorem 2.13. Consider an n-ribbon surface satisfying the genericity condition: f;,
Afi_1, and Af; are not coplanar at any admissible point to and integer i. Then this
surface is infinitesimally flexible if and only if any 3-ribbon surface contained in the surface
is infinitesimally flexible.

Proof. The proof is straightforward. All the conditions for infinitesimal flexion are exactly
the conditions for 3-ribbon surfaces of Theorem 2.7. O

For the finite flexibility we have the following.

Theorem 2.14. Consider an n-ribbon surface satisfying the genericity condition: f;-,
Afi_1, and Af; are not coplanar at any admissible point ty and integer i. Then this
surface is flexible if and only if any 3-ribbon surface contained in the surface is flexible.

Remark 2.15. We think of this theorem as of a semidiscrete analogue to the statement of
the paper [2] on conjugate nets and all (3 x 3)-meshes that they contain. In this paper
we do not study phenomena related to non-compactness and hence we restrict ourselves
to the case of compact n-ribbons surfaces.
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Proof. The “only if” part of the statement is straightforward. We prove the converse by
induction on the number of ribbons in a surface.

Induction base. By assumption any 3-ribbon subsurface contained in the surface is
flexible. It has one degree of freedom, since by Theorem 1.9 any 2-ribbon subsurface of a
3-ribbon surface has at most one degree of freedom, while the genericity condition holds
in a certain neighborhood of a starting position.

Induction step. Suppose we know that any k-ribbon subsurface is flexible and has one
degree of freedom in some neighborhood (for k£ > 3).

Let us prove the statement for any (k+1)-ribbon subsurface. We consider a (k+1)-
ribbon subsurface as the union of two k-ribbon subsurfaces that intersect in a (k—1)-ribbon
subsurface. By the induction assumption this (k—1)-ribbon surface has one degree of
freedom compatible with the flexions of both k-ribbon subsurfaces. Therefore, the flexion
of the (k—1)-ribbon subsurface is uniquely extended to the both k-ribbon subsurfaces.
This implies flexibility of the (k+1)-ribbon with one degree of freedom. O

3. FLEXIONS OF DEVELOPABLE SEMIDISCRETE SURFACES

Suppose that all ribbons of a semidiscrete surface are developable, i.e. the vectors fi
Af;, and f;1 are linearly dependent. We call such semidiscrete surfaces developable. In
this section we describe an additional property for flexions of developable semidiscrete
surfaces.

Proposition 3.1. Consider a developable 2-ribbon semidiscrete surface f. Let

Afi(t) = ai() fi(t) + bi(t) fira (¢)
fori=0,1. Then for the function H;(t) we have
1 B 1
bi(t) ai_1(t)

Proof. The expression is obtained from the expression in the definition of H; (on page 20)
after the substitutions

Afi(t) = a;(E) f;(t) +b;(t) fi4a(t)  and  Afi(t) = fia(t) — ()
for j =i—1, i U

Hi(t) =

This fact gives a surprising corollary concerning the flexion of a 2-ribbon developable
surface. The degree of freedom for a flexion of a generic 2-ribbon developable surface is
1, as can easily be seen from the genericity condition for 2-ribbon surfaces. So a flexion is
unique up to the choice of a parameter. Denote by «(t) the angle between Afy and Af;.

Corollary 3.2. Consider a flexion of a 2-ribbon developable surface f. Let us choose the
parameter v of the flexion such that cos(a(ty)) changes linearly in ~v. Then for any t the
value cos(a(t)) changes linearly in .
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Proof. Let f be the 2-ribbon surface defined by

: Afo - AV}
Afo_—|Af0|7 J1=f1, and Af1——|Afl|-

The 2-ribbon surface f is in some sense a normalization of a surface f, so f is devel-
opable, and the flexions for f and for f coincide.
For the surface of f we get

cosa = (Afo,Af1> =®,

since |[Afy] = 1 and |[Af;| = 1. Now the statement of the corollary for f follows from
Proposition 2.2 and the inner geometry expression of Proposition 3.1 for the function
under integration (that is actually H;).

Since f is a normalization of f the statement of the corollary holds for f as well. [
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