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ABSTRACT
We consider the offset-deconstruction problem: Given a polyg-
onal shape Q with n vertices, can it be expressed, up to a
tolerance ε in Hausdorff distance, as the Minkowski sum of
another polygonal shape P with a disk of fixed radius? If
it does, we also seek a preferably simple-looking solution
shape P ; then, P ’s offset constitutes an accurate, vertex-
reduced, and smoothened approximation of Q. We give an
O(n log n)-time exact decision algorithm that handles any
polygonal shape, assuming the real-RAM model of compu-
tation. An alternative algorithm, based purely on rational
arithmetic, answers the same deconstruction problem, up to
an uncertainty parameter δ, and its running time depends
on the parameter δ (in addition to the other input param-
eters: n, ε and the radius of the disk). If the input shape
is found to be approximable, the rational-arithmetic algo-
rithm also computes an approximate solution shape for the
problem. For convex shapes, the complexity of the exact
decision algorithm drops to O(n), which is also the time re-
quired to compute a solution shape P with at most one more
vertex than a vertex-minimal one. Our study is motivated
by applications from two different domains. However, since
the offset operation has numerous uses, we anticipate that
the reverse question that we study here will be still more
broadly applicable. We present results obtained with our
implementation of the rational-arithmetic algorithm.

Categories and Subject Descriptors:
I.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems - Geometrical problems
and computations

General Terms: Algorithms, Theory

Keywords: offsets, Minkowski sums, polygonal smoothing,
deconstruction
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1. INTRODUCTION
The r-offset of a polygon, for a real parameter r > 0,

is the set of points at distance at most r away from the
polygon. Computing the offset of a polygon is a fundamen-
tal operation. The offset operation is, for instance, used
to define a tolerance zone around the given polygon [1] or
to dilute details for clarity of graphic exposition [2, 3, 4].
Technically, it is usually computed as the Minkowski sum
of the polygon and a disk of a certain radius. The result-
ing shape is bounded by straight-line segments and circular
arcs. However, a customary practice is to model the disk
in the Minkowski sum with a (tight) polygon, which yields
a piecewise-linear approximation of the offset. Our study
is motivated by two applications, where such an approxi-
mation forms the legacy data which a program has to deal
with—the original shape before offsetting is unknown. This
leads us to the question what is the original polygon whose
approximate offset we have at hand. Of course, finding the
exact original polygon, or even its topology, is impossible
in general, because the offset might have blurred small fea-
tures like holes or dents. However, a reasonable choice can
lead to a more compact and smooth representation of the
approximate offset.

The first relevant problem concerns cutting polygonal parts
out of wood. A wood-cutting machine, which can smoothly
cut along straight line segments and circular arcs, is given a
plan to cut out a certain shape. This shape was designed as
a polygon expanded by a small offset, but with circular arcs
approximated by polygonal lines comprising many tiny line
segments. Thus instead of moving smoothly along circular
arcs, the cutting tool has to move along a sequence of very
short segments, and make a small turn between every pair
of segments. The process becomes very slow, the tool heats
up, and occasionally it causes the wood to burn. Moving the
cutting tool smoothly and fast enough is the way to keep it
cool. If this were the only issue, other smoothing techniques
like arc-spline approximation [5, 6] may have been applica-
ble. However, we may also wish to reduce the offset radius if
a more accurate cutting machine is available—in this case,
it seems desirable to find the original shape first and then
to re-offset with a smaller radius.

A motivation to study this question from a different do-
main is to recover shapes sketched by a user of a digital
pen and tablet. The pen has a relatively wide tip, and the
input obtained is in fact an approximate offset (with the ra-



dius of the pen tip) of the intended shape. The goal is to
give a good polygonal approximation of the intended shape.
More broadly, as the offset operation is so commonplace,
it seems natural to ask, given only an (approximated) offset
shape, what could be the original shape before the offsetting.
Therefore, we pose
Problem 1: the (offset-)deconstruction problem or de-

cision problem Given a polygonal shape Q, and two
real parameters r, ε > 0, decide if Q is within (sym-
metric) Hausdorff-distance ε to the r-offset (i.e., offset
with radius r) of some other (yet unknown) polygonal
shape P .

Problem 2: finding a valid source If the answer to Prob-
lem 1 is YES, compute a valid polygonal shape P . We
refer to P as a valid source of the approximate off-
set Q. Note that P might be disconnected, even if Q
is connected (Figure 1.1).

Problem 1 can be seen as a special case of the Minkowski
decomposition problem which asks whether a set can be com-
posed in a non-trivial way as the Minkowski sum of two
sets—disallowing a summand to be a homothetic copy of
the input set. A general criterion for decomposability of
convex sets in arbitrary dimension has been presented in [7].
A particularly well-studied case are planar lattice polygons,
because of their close relation to problems in algebra, for in-
stance, polynomial factorization [8]. It has been shown that
deciding decomposability is NP-complete for lattice poly-
gons [9]. In [10], decomposability is investigated under the
constraint that one of the summands is a line segment, a
triangle, or a quadrangle. However, all these approaches
discuss the exact decomposition problem; our scenario of
being Hausdorff-close to a particular decomposition seems
to not have been addressed in the literature. Allowing toler-
ance raises interesting algorithmic questions and at the same
time makes the tools that we develop more readily suitable
for applications, which typically have to deal with inaccura-
cies in measuring and modeling.

Contributions. We first present an efficient algorithm
to decide Problem 1: For a shape Q with n vertices, the
algorithm reports the correct answer in O(n log n) time in
the real-RAM model of computation [11]. It constructs off-
sets with increasing radii in three stages; the intermediate
shapes arising during the computation are in general more
difficult to offset than polygons, as they are bounded by
straight-line segments and “indented” circular arcs (namely,
the shape is locally on the concave side of the arcs). The
main observation is that for certain classes of such shapes,
these circular arcs can be ignored when computing the next
offset (see Theorem 5 for the precise statement). This obser-
vation bounds the time required by each offset computation
by O(n log n), which is the key to the efficiency of the deci-
sion algorithm. Our proof is constructive, that is, if a valid
source (Problem 2) exists, a solution can be computed with
the same running time.

The computation of the exact decision procedure requires
the handling of algebraic coordinates of considerably high
degree. As alternative, we give an approximation scheme
that works exclusively with rational numbers instead. The
scheme proceeds by replacing the offset disks by polygonal
shapes of similar diameter, whose precision is determined
by another parameter δ < ε. We prove a bound ∆ that
depends on ε̂, the minimal ε for which the answer to the
decision problem is YES, such that the rational approxima-

tion returns the exact result for all δ ≤ ∆. If the input
shape is found to be approximable, this algorithm also out-
puts a valid source. The computation of ε̂ up to any desired
precision is still possible. We believe that our investigation
of the relation between δ and ε̂ is of independent relevance,
mostly to the study of certified algorithms that approximate
geometric objects with algebraic coordinates by means of ra-
tional arithmetic.

For a convex shape Q with n vertices, we reduce the run-
ning time for solving Problem 1 to the optimal O(n) (in
the real-RAM model). Moreover, we describe a greedy algo-
rithm within the same time complexity that returns a valid
source P ⋆ which minimizes, up to one extra vertex, the num-
ber of vertices among all valid choices, if there are any. Our
algorithm technically resembles an approach for the different
problem of finding a vertex-minimal polygon in the annulus
of two nested polygons [12]. We also remark that the r-offset
of P ⋆ has a tangent-continuous boundary and therefore con-
stitutes a special case of an arc-spline approximation of Q
where all circular arcs have the same radius.

Organization. We describe an exact decision algorithm
for the deconstruction problem (solving Problem 1 above) in
Section 2. In Section 3 we describe a rational-approximation
algorithm for the deconstruction problem. Both algorithms
output a valid source in case the input is deconstructible
(solving Problem 2). For convex input, Section 4 exposes a
specialized deconstruction and the computation of an almost
vertex-minimal valid source. Details on our implementation
and some illustrative cases are depicted in Section 5. We
conclude in Section 6 by pointing out open problems.1

2. THE DECISION ALGORITHM
For a set X ⊂ R2 denote its boundary by ∂X and its

complement by XC := R2 \X. A polygonal region or polyg-
onal shape X ⊂ R2 is a set whose boundary consists of
finitely many line segments with disjoint interiors. The end-
points of these straight-line segments are the vertices of
the polygonal region. We assume henceforth that the in-
put shapes that we deal with are bounded (but not nec-
essarily connected). Although the techniques seem to go
through also for unbounded shapes, this assumption sim-
plifies the exposition and is sufficient for the real-life ap-
plications we have in mind. If X is a bounded polygo-
nal region, ∂X is the union of (weakly) simple polygons.
For two sets X and Y , we denote their Minkowski sum
by X ⊕ Y := {x + y | x ∈ X, y ∈ Y }. With d(·, ·) the
Euclidean distance function, and any c ∈ R2, r ∈ R, we
write Dr(c) := {p ∈ R2 | d(c, p) ≤ r} for the (closed)
r-disk around c, and Dr := Dr(O) for the disk centered
at the origin. The r-offset of a set X, offset(X, r), is the
Minkowski sum X ⊕Dr.

For p ∈ R2 and X a closed set, we write d(p,X) :=
min{d(p, x) | x ∈ X}. The (symmetric) Hausdorff distance
of two closed point sets X and Y is

H(X,Y ) := max{max{d(x, Y ) | x ∈ X},max{d(y,X) | y ∈ Y }}.

We say that X is ε-close to Y (and Y to X) if H(X,Y ) ≤ ε,
which can also be expressed alternatively:

1A preliminary and abridged version of this paper, excluding
the results of Sections 3 and 5 in particular, appeared in Ab-
stracts of the 26th European Workshop on Computational
Geometry [13].



Q
P

r

φ2

φ1

r
Q

P

Q

P

r

Figure 1.1: For a given Q, the red P is a candidate summand whose exact r-offset is shaded. Left: For a given ε, deconstruction
is ensured iff φ1 ≤ ε and φ2 ≤ ε. Note that, when r decreases, φ1 decreases, but φ2 increases. Middle: Example where Q can
be approximated by an r-offset of a P that has much fewer vertices than Q. Right: Example where Q can be approximated
by the r-offset of a disconnected shape P .

Proposition 1. For X,Y closed, X is ε-close to Y if
and only if Y ⊆ offset(X, ε) and X ⊆ offset(Y, ε).

Decision algorithm. We fix r > 0, ε > 0, and a polyg-
onal region Q, and consider the following question: Is there
a polygonal region P such that Q and the r-offset of P have
Hausdorff-distance at most ε? First of all, we can assume
that r > ε; otherwise, we can choose P := Q, because
offset(Q, r) and Q have Hausdorff-distance at most ε. We
define another operation, r-inset (a.k.a. “erosion”), which is
computationally similar to an offset:

Definition 2. For r > 0, and X ⊂ R2, the r-inset of X
is the set inset(X, r) := offset(XC , r)C =

˘
x ∈ R2 | Dr(x) ⊆ X

¯
.

We are now ready to present the decision algorithm:

Algorithm 1 Decide(Q, r, ε)

(1) Qε ← offset(Q, ε)
(2) Π← inset(Qε, r)
(3) Q′ ← offset(Π, r + ε)
(4) return Q ⊆ Q′

We next prove that Decide (Algorithm 1) correctly de-
cides whether Q is ε-close to some r-offset of a polygonal re-
gion. A first observation is that for any polygonal region P ,
offset(P, r) ⊆ Qε if and only if P ⊆ Π. This is an immediate
consequence of the definition of the inset operation. This
shows that for any offset(P, r) that is ε-close to Q, P must
be inside Π. Moreover, it shows that any choice of P ⊆ Π al-
ready satisfies one of Proposition 1’s inclusions. It is only left
to check whether Q ⊆ offset(offset(P, r), ε) = offset(P, r+ε).
We summarize:

Proposition 3. Q is ε-close to offset(P, r) if and only if
P ⊆ Π and Q ⊆ offset(P, r + ε).

To prove correctness of Decide, we have to show that
Q ⊆ offset(Π, r + ε) already implies that there also exists a
polygonal region P ⊆ Π with Q ⊆ offset(P, r + ε). Indeed,
Π is not polygonal in general; we have to study its shape
closer to prove that we can approximate it by a polygonal
region, maintaining the property that the offset remains ε-
close to Q.

The shape of offsets and insets. For a polygonal
region Q, it is not hard to figure out the shape of Qε =
offset(Q, ε): It is a closed set bounded by straight-line seg-
ments and by circular arcs, belonging to a circle of radius ε.
It is important to remark that all circular arcs are bulges:

Definition 4. Let X ⊂ R2 be a closed set with some
circular arc γ on its boundary. Then, γ is called a dent with
respect to X, if each line segment connecting two distinct
points on γ is not fully contained in X. Otherwise, the arc
is called a bulge.

We call X a bulged (resp. an indented) region with radius
r, if ∂X consists of finitely many straight-line segments and
bulges (resp. dents) that are all of radius r, interlinked at
the vertices of the region.

Note that a bulged region
(left) is not necessarily convex.
The r-offset of a polygonal re-
gion P is a bulged region with
radius r. The heart of this section is Theorem 5 showing
that the same also holds if P is an indented region (right)
with radius smaller than r:

Theorem 5. Let P be an indented region with radius r1,
and let r2 > r1. Then, there is a polygonal region PL ⊆
P such that offset(P, r2) = offset(PL, r2). In particular,
offset(P, r2) is a bulged region with radius r2.

Proof. After possibly splitting circular arcs into at most
four parts, we can assume that each circular arc spans at
most a quarter of the circle. For such a circular arc, we
define its endpoints by x1 and x2, and denote the linear cap
of the circular arc as the (closed) indented region enclosed
by the circular arc, and the two lines tangent to the circle
through x1 and x2 (the shaded area in Figure 2.1a). The
extended linear cap is the (polygonal) region spanned by
the two tangents just mentioned, and the two corresponding
normals at x1 and x2. Clearly, the normals meet in the
center of the circle that defines the arc.

We iteratively replace a indented arc of an indented region
P ′ with radius r1 (initially set to P ) by a polyline ℓ ending
in the endpoints of the circular arc, such that ℓ does nei-
ther leave P ′ nor the linear cap of the circular arc, and such
that other boundary parts of P ′ are not intersected. This
yields another indented region P ′′ with radius r1, where one
indented arc is replaced by a polyline, as depicted in Fig-
ure 2.1a. Iterating this construction, starting with P , until
all indented arcs are replaced, we obtain a polygonal re-
gion PL.

We show that in each iteration, the r2-offsets of P ′ and P ′′

are the same. For that we consider any point x′ ∈ P ′ \ P ′′,
in the region that is cut off by P ′′, and consider y = x′ + v′

for an arbitrary v′ ∈ Dr2 . We show that in all cases, y can
also be written by y = x′′+v′′, with x′′ ∈ P ′′, and v′′ ∈ Dr2 .
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Figure 2.1: (a) The (extended) linear cap split by the polyline ℓ (b-c) the two cases in the proof of Theorem 5.

Since the circular arc spans at most a quarter of the circle,
it is easily seen that Dr1(x1) ∪ Dr1(x2) covers the whole
extended linear cap. Therefore, for any y that lies within
the extended linear cap, selecting x′′ = x1 or x′′ = x2, we
get y = x′′ + v′′ with v′′ ∈ Dr1 .

We distinguish two other cases: for y that lies outside of
the extended linear cap v′ = x′y crosses either ℓ or the circu-
lar arc. In the former case, we can simply pick the crossing
point as x′′, and set v′′ ∈ Dr2 accordingly (Figure 2.1b). In
the latter case, let’s denote the crossing point as x∗ (Fig-
ure 2.1c). We consider the set of points that is closer to
x∗ than to x1 and x2. Clearly, that region is bounded by
the two corresponding bisectors, which meet in the center
of the circle that defines the circular arc and is therefore
completely contained within the extended linear cap. It fol-
lows that y is closer to one of the endpoints of the arc, say
x1, than to x∗. Selecting x′′ = x1 we ensure y is closer to
x′′ than to x′, which proves that y = x′′ + v′′ with some
v′′ ∈ Dr2 in this case as well.

The proof of Theorem 5 implies that offset(P, r2) for such
a region P is completely determined by the offset of its linear
segments, and the offset of the endpoints of circular arcs: the
interior of the indented circular arcs can be ignored.

Corollary 6. Decide returns YES if and only if there
exists a polygonal region P such that offset(P, r) is ε-close
to Q.

Proof. Qε is a bulged region with radius ε. Therefore,
QCε is an indented region with the same radius. Since r > ε,
Theorem 5 implies that offset(QCε , r) is a bulged region with
radius r, and so, offset(QCε , r)

C = inset(Qε, r) = Π is an
indented region with the same radius. Using r + ε > r

and applying Theorem 5 once more, there exists a polygonal
region P ⊆ Π such that offset(Π, r + ε) = offset(P, r + ε).
It follows that, if the algorithm returns YES, there is indeed
a polygonal region P whose r-offset is ε-close to Q. If the
algorithm return NO, it is clear that no such polygonal region
can exist.

Theorem 7. Let P be an indented region with radius r1
having n vertices, and assume r2 > r1. Then, offset(P, r2)
has O(n) vertices and it can be computed in O(n log n) time.

Proof. By Theorem 5, it suffices to consider a polygo-
nally bounded PL instead of P . We use trapezoidal decom-
position of P to construct such a PL with only O(n) vertices.

The Voronoi diagram of PL’s vertices and (open) edges can
be computed in O(n log n) time and has size O(n) [14]. From
it, the offset polygon with the same asymptotic complexity
can be obtained in linear time [15].

Corollary 8. Decide decides ε-closeness with O(n log n)
operations.

Proof. Apply Theorem 7 in each step of Algorithm 1.
The fourth step runs in O(n log n) time as well using a simple
sweep-line algorithm.

Note that ΠL, if constructed for Π as in the proof of The-
orem 5 during step (3) of Algorithm 1, is a valid source for
Q if Decide returns YES.

3. RATIONAL APPROXIMATION
A direct realization of Algorithm 1 runs into difficulties

since vertices of the resulting offsets are algebraic numbers
(and their degree increases for cascaded offset computation).
We next describe two approximation variants of Algorithm 1,
each producing a certified one-sided decision by approximat-
ing all disks in the algorithm with k-gons. In order to make
guaranteed statements about the exact ε-approximability by
r-offsets, we have to approximate the disks by a “working
precision” δ which is even smaller than ε. Recall that Dr
is the disk of radius r centered at the origin. For a, b ∈ R,
a < b define D̄a,b to be a polygon with rational vertices
whose boundary lies in the annulus Db \ Da. In the ap-
proximation algorithms, every disk is replaced with such a
polygon lying inside a δ-width annulus.

Interior approximation. In the first part of our algo-
rithm, we ensure that the final approximation of Q′ (see

line (3) of Algorithm 1), called cQ′ , will be a subset of the
exact Q′. We achieve this by approximating Ds by D̄s−δ,s
when an offset is computed; and by approximating Ds by
D̄s,s+δ when an inset is computed; see Algorithm 2.

Lemma 9. If ApproxDecideInterior (Q, r, ε, δ) returns
YES, then Decide(Q, r, ε) returns YES as well, which means
that there exists a polygonal region P such that offset(P, r)

is ε-close to Q. In particular, P := bΠ is a valid source.

Proof. Compare the execution of Algorithm 2 with the
corresponding call of its exact version, Algorithm 1. It is

straight-forward to check that for any δ, cQε ⊂ Qε, bΠ ⊂ Π,



Algorithm 2 ApproxDecideInterior (Q, r, ε, δ)

(1) cQε ← Q⊕ cDε with cDε ← D̄ε−δ,ε

(2) bΠ←
“

cQε
C ⊕ cDr

”C
with cDr ← D̄r,r+δ

(3) cQ′ ← bΠ⊕ D̂r+ε with D̂r+ε ← D̄r+ε−δ,r+ε

(4) if Q ⊆ cQ′, return YES,
otherwise, return UNDECIDED

and cQ′ ⊂ Q′. The last inclusion shows that if Q ⊆ cQ′, also
Q ⊆ Q′.

Definition 10. For fixed Q and r, define ε̂ := inf{ε |
Decide(Q, r, ε) returns YES}.

Note that ε̂ ∈ [0, r], and that Decide(Q, r, ε) returns YES

for every ε ≥ ε̂ and returns NO for every ε < ε̂. We do
not have a way to compute ε̂ exactly. However, we show
next that ApproxDecideInterior (Q, r, ε, δ) returns YES

for every ε > ε̂ for δ small enough, and that the required
precision δ is proportional to the distance of ε to ε̂.

Theorem 11. Let ε > ε̂, and δ < ε−ε̂
2

. Then, Approx-
DecideInterior (Q, r, ε, δ) returns YES.

Proof. Let ε0 be such that ε̂ < ε0 < ε0 + 2δ ≤ ε. Let
Qε0 , Π and Q′ denote the intermediate results of Decide

(Q, r, ε0) and let cQε, bΠ, cQ′ denote the intermediate results
of ApproxDecideInterior (Q, r, ε, δ). By the choice of
ε0, YES is returned, and thus Q ⊆ Q′. The theorem follows

from Q′ ⊆ cQ′, which we prove in three substeps:

(1) offset(Qε0 , δ) ⊆ cQε: Indeed, offset(Qε0 , δ) = offset(Q, ε0+

δ) ⊆ offset(Q, ε− δ) ⊂ Q⊕ cDε = cQε.

(2) Π ⊆ bΠ: Starting with (1), we obtain

offset(Qε0 , δ) ⊆ cQε
⇒ offset(Qε0 , δ)

C ⊕Dr+δ ⊇ cQε
C ⊕ cDr

⇒ inset(offset(Qε0 , δ), r + δ) ⊆ bΠ .

On the left-hand side, we use that inset(offset(A, r), r) ⊇
A to obtain:

inset(offset(Qε0 , δ), r + δ)

= inset(inset(offset(Qε0 , δ), δ), r)

⊇ inset(Qε0 , r) = Π.

(3) Q′ ⊆ cQ′: Using (2), we have that

offset(Π, r + ε− δ) = Π⊕Dr+ε−δ ⊆ bΠ⊕ D̂r+ε = cQ′.

Note that r+ε−δ > r+ε0, and therefore, offset(Π, r+
ε− δ) ⊃ offset(Π, r + ε0) = Q′.

Exterior approximation. In Algorithm 3, we ensure

that cQ′ becomes a superset of the exact Q′ by appropriately
choosing approximate disks. Specifically, we approximate
Ds by D̄s,s+δ when an offset is computed, and Ds by D̄s−δ,s
when an inset is computed. Not surprisingly, we get a cer-
tified answer in the other direction, and a certified answer
is guaranteed when δ is sufficiently small. The proofs of
the following two statements are similar to Lemma 9 and
Theorem 11 and thus omitted.

Algorithm 3 ApproxDecideExterior (Q, r, ε, δ)

(1) cQε ← Q⊕ cDε with cDε ← D̄ε,ε+δ

(2) bΠ←
“

cQε
C ⊕ cDr

”C
with cDr ← D̄r−δ,r

(3) cQ′ ← bΠ⊕ D̂r+ε with D̂r+ε ← D̄r+ε,r+ε+δ

(4) if Q ⊆ cQ′, return UNDECIDED,
otherwise, return NO

Lemma 12. If ApproxDecideExterior (Q, r, ε, δ) re-
turns NO, then Decide(Q, r, ε) returns NO as well, which
means that there exists no polygonal region P such that offset(P, r)
is ε-close to Q.

Theorem 13. Let ε < ε̂ and δ < ε̂−ε
2

. Then, Approx-
DecideInterior (Q, r, ε, δ) returns NO.

In combination with Theorem 11, it follows that the exact

answer can always be found for δ < ∆ := |ε−ε̂|
2

by combining
ApproxDecideExterior or ApproxDecideInterior.

Complexity analysis. The main task is to bound the
number of vertices of D̄a,b. We will create a D̄a,b with the ad-
ditional property that all vertices lie on ∂Db.

b
−

a

d = 2 ·

√

b2 − a2

a

b

√

b2 − a2

Da

Db

As depicted on the right,
two such points on Db
are connected by a chord
of the boundary circle
that does not intersect
Da if and only if the
angle induced by the
two points is at most
ψ := 2 arccos a

b
, or equiv-

alently, the length of the chord is less than 2
√
b2 − a2. Note

that we need at least 2π
ψ

points on ∂Db for a valid D̄a,b, and

2π
ψ
∈ Θ(

q
b

b−a
) as easily shown by L’Hopital’s rule.

Rational points on ∂Db can be constructed for an arbi-

trary t ∈ Q as Qt := (b 1−t2

1+t2
, b 2t

1+t2
) [16]. For some positive

z ∈ Z, we define Pi := Qi/z for i = 0, . . . , z.

Lemma 14. For every i = 1, . . . , z − 1, the chord Pi−1Pi
is longer than the chord PiPi+1. In particular, the length of
each chord is bounded by the length of P0P1 which is shorter
than 2b

z
.

ti = i
z
, 0 ≤ i ≤ z

t1 = 1
z

2
z

t2

t0

d̃

. . .

S O P0 = D0

P1

P2

D2

D1

Proof. W.l.o.g., we
assume b = 1 for
the proof, since the
chord length scales pro-
portionally when scal-
ing the circle by a fac-
tor of b. The point Qt =

( 1−t2

1+t2
, 2t

1+t2
) can be con-

structed geometrically as the intersection point of ∂Db with
the line ℓt through S = (−1, 0) and slope t (see the figure
enclosed in this paragraph). In particular, the line SPi has
slope i

z
; we let Di denote the intersection point of that line

with the line x = 1. We observe that the segment DiDi+1

has length 2
z
, and that SDi < SDi+1 for i = 0, . . . , z − 1.

We are showing next that the chord Pi−1Pi is longer than
PiPi+1. For that, we consider the triangle SDi−1Di+1, and
its bisector at S. This bisector intersects the line x = 1 at
some point B. By the Angle bisector theorem, B divides



the segment Di−1Di+1 proportionally to the corresponding

triangle sides, that is,
SDi−1

SDi+1
=
BDi−1

BDi+1
. Because the left-

hand side is smaller than 1, it follows that BDi−1 is shorter
than BDi+1. Therefore, B lies below Di, and therefore, the
angle αi−1 = ∠Di−1SDi = ∠Pi−1SPi is larger than αi =
∠DiSDi+1 = ∠PiSPi+1. But the chord lengths Pi−1Pi and
PiPi+1 are defined by 2 sin(αi−1) and 2 sin(αi), respectively,
which proves that the chord lengths are indeed decreasing.

Finally, by Thales’ theorem, the triangle SP0P1 has a right
angle at P1. Therefore, the longest chord P0P1 is shorter
than the segment D0D1, which has length 2

z
.

Note that all Pi’s lie in the first quadrant of the plane and
that P0 := (b, 0) and Pz := (0, b). Therefore, we can sub-
divide the other three quarters of the circle symmetrically
such that the length of each chord is bounded by 2b

z
, using

4z vertices altogether. To compute a valid D̄a,b, it suffices to

choose a z such that 2b
z
≤ 2
√
b2 − a2, that is z ≥

q
b2

b2−a2
.

We choose z0 :=
lq

b
b−a

m
, indeed, since 0 < a < b, we have

that z0 ≥
q

b
b−a

>
q

b
b−a
· b
b+a

=
q

b2

b2−a2
. As stated above,

we need at least Ω(
q

b
b−a

) points, so z0 is an asymptotically

optimal choice. We summarize the result

Lemma 15. For a < b, a polygonal region D̄a,b as above

with O(
q

b
b−a

) (rational) points can be computed using O(
q

b
b−a

)

arithmetic operations.

The Minkowski sum of an arbitrary polygonal region with n
vertices and a convex polygonal region with k vertices has
complexity O(kn) and it can be computed in O(nk log2(nk))
operations by a simple divide-and-conquer approach, using
a sweep line algorithm in the conquer step [17]. Using gener-
alized Voronoi diagrams where the distance is based on the
convex summand of the Minkowski sum operation [18], we
obtain an improved algorithm, which requires onlyO(kn log(kn))
operations. In combination with Lemma 15, this leads to
the following complexity bound for the two approximation
algorithms.

Theorem 16. Algorithms ApproxDecideInterior and
ApproxDecideExterior each requires

O(n
r

δ

r
ε

δ
· log(n

r

δ

r
ε

δ
))

arithmetic operations with rational numbers.

We remark that the O(n log n) bound for Decide refers
to operations with real numbers instead. In Section 5 we
present examples of approximative decisions.

Searching ε̂. Consider the problem of computing ε̂, the
minimal ε such that Decide returns YES for fixed Q and
r. We have no algorithm to compute that value exactly;
however, a simple binary search strategy using Decide lets
us approximate ε̂ to arbitrary precision.

We demonstrate that this approximation can be achieved
also by combining the two approximative one-sided deci-
sions. Again, we perform a binary search on ε. We chose
some initial δ0 < ε. In case a clear answer is derived (YES for
ApproxDecideInterior or NO for ApproxDecideExte-
rior) we proceed as if we were using Decide. In the other
case both approximative algorithms fail to bisect the search
range. From Theorems 11 and 13 it follows that the chosen

ε is only at most 2δ away from ε̂. If 2δ is smaller than the
desired precision we stop. Otherwise, we halve δ and con-
tinue. That is, the approximative algorithms conduct the
subdivision of ε with the current δ or we halve δ again. A
similar binary-search-like strategy can be used to find the
maximal radius r for which Decide returns YES for fixed Q
and ε.

4. DECONSTRUCTING CONVEX POLYGONS
Assume that the input Q to Algorithm 1 is a convex poly-

gon. We first improve the decision algorithm such that it
runs in linear time (Algorithm 4). Then we look for a poly-
gon P with a minimal number of vertices (OPT) such that
Q is ε-close to offset(P, r). We give a simple linear-time
approximation algorithm that produces a polygon with at
most OPT + 1 vertices.

Lemma 17. If Q is a convex polygonal region, then Π, as
computed by Decide (Algorithm 1), is also a convex poly-
gon, and it can be computed in O(n) time.

Proof. Q is the intersection of the half-planes bounded
by lines that support the polygon edges. Observe that Π
can be directly constructed from Q by shifting each such
line by r− ε inside the polygon, which shows that Π is con-
vex. For the time complexity, we divide the shifted edges of
Q into those bounding Q from above, and those bounding
Q from below (we assume w.l.o.g. that no edge is vertical).
Consider the former edges; the lines supporting those edges
have slopes that are monotonously decreasing when travers-
ing the edges from left to right. We have to compute their
lower envelope; for that, we dualize by mapping y = mx+ c

to (m,−c), which preserves above/below relations, and com-
pute the upper hull of the dualized points. Since we already
know the order of the points in their x-coordinate, this can
be done in linear time using Graham’s scan [19, 20]. The
same holds for the edges bounding from below, taking the
upper envelope/lower hull.

Decide first computes Π and checks whetherQ ⊆ offset(Π, r+
ε). We replace the latter step for convex polygons: Let
q1, . . . , qn be the vertices of Q (in counterclockwise order)
and define Ki = Dr+ε(qi), namely the disk of radius r + ε

centered at qi. We check whether all these disks intersect Π:

Algorithm 4 ConvexDecide(Q, r, ε)

(1) Qε ← offset(Q, ε)
(2) Π← inset(Qε, r)
(3) if Ki ∩Π 6= ∅ for all i = 1, . . . , n, return YES,

otherwise return NO

Lemma 18. ConvexDecide agrees with Decide on con-
vex input polygons Q and runs in O(n) time.

Proof. For correctness, it suffices to prove that offset(Π, r)
is ε-close to Q if and only if each Ki intersects Π: Indeed,
if any Ki does not intersect Π, then qi has distance more
than r+ ε to Π, so Q is not ε-close to the offset. Otherwise,
if each disk Ki intersects Π, offset(Π, r + ε) contains each
vertex of Q. Since it is a convex set (as the Minkowski sum
of two convex sets), it also covers each edge of Q. Thus,
Q ⊆ offset(Π, r + ε), which ensures that Q is ε-close to the
offset by Proposition 3.



For the complexity, Lemma 17 shows that the computa-
tion of Π runs in linear time. We still have to deminstrate
that the last step of the algorithm (checking for non-empty
intersections) also takes a linear time. Let e1, . . . , em be the
edges of Π (with m < n). To check for an intersection of Ki

with Π, we traverse the edges and check for an intersection,
returning NO if no such edge is found. However, if such an
edge, say ej was found, we start the search for an intersec-
tion of the next diskKi+1 at ej , again traversing the edges in
counterclockwise order. Using this strategy, and noting that
K1, . . . ,Kn are arranged in counterclockwise order around
Π, it can be easily seen that we iterate at most twice through
the edges of Π.

Reducing the number of vertices. We assume that
offset(Π, r) is ε-close to Q. We prefer a simple-looking ap-
proximation of Q, thus we seek a polygon P ⊆ Π whose
offset is ε-close to Q, but with fewer vertices than Π. Any
such P intersects each of the bulged regions of radius r+ ε:
κi := Ki ∩ Π, i = 1, . . . , n. We call these bulged regions
Π’s eyelets. The converse is also true: Any convex polygon
P ⊆ Π that intersects all eyelets κ1, . . . , κn has an r-offset
that is ε-close to Q.

The following observation is a simple consequence of Propo-
sition 3:

Proposition 19. If offset(P, r) is ε-close to Q, and P ⊆
P ′ ⊆ Π, then offset(P ′, r) is ε-close to Q.

We call a polygonal region P (vertex-)minimal, if its r-
offset is ε-close to Q, and there exists no other such region
with fewer vertices. Necessarily, a minimal P must be con-
vex – otherwise, its convex hull CH(P ) has fewer vertices
and it can be seen by Proposition 19 that offset(CH(P ), r)
is also ε-close to Q. By the next lemma, we can restrict our
search to polygons with vertices on ∂Π.

Lemma 20. There exists a minimal polygonal region P ⊆
Π the vertices of which are all on ∂Π.

p′i

pi+1

pi

πj+3

πj+2

πj+1
πj

Proof. We pull each vertex
pi 6∈ ∂Π in the direction of the
ray emanating from pi−1 towards
pi until it intersects ∂Π in the
point p′i (dragging pi’s incident
edges along with it); see the en-
closed illustration. For P ′ = (p1, . . . , pi−1, p

′
i, pi+1, . . . , pm):

P ⊆ P ′ ⊆ Π, offset(P ′, r) is ε-close to Q by Proposi-
tion 19.

We call a polygonal region P good, if P ⊆ Π, all vertices
of P lie on ∂Π, and P intersects each eyelet κ1, . . . , κn. Note
that any good P is convex.

Definition 21. For two points u, u′ ∈ ∂Π, we denote by
[u, u′] ⊂ ∂Π all points that are met when travelling along ∂Π
from u to u′ in counterclockwise order. Likewise, we define
half-open and open intervals [u, u′), (u, u′], (u, u′).

Let κi = Ki ∩ Π be qi’s eyelet as before. Consider κi ∩
∂Π. The portion of that intersection set that is visible from
qi (considering Π as an obstacle) defines a (ccw-oriented)
interval [vi, wi] ⊂ ∂Π. We call vi the spot of the eyelet κi.
Finally, for u, u′ ∈ ∂Π, we say that the segment uu′ is good,
if for all spots vi ∈ (u, u′), uu′ intersects the corresponding
eyelet κi.

q3

q1

q2

v1

κ2

κ1

κ3

w3

w2

p

hp

w1

v2

p′

p′′

v3

The figure to the right illustrates
these definitions: The segment pp′

is good, whereas pp′′ is not good,
because v2 ∈ (p, p′′), but the seg-
ment does not intersect κ2.

Theorem 22. Let P be a con-
vex polygonal region with all its
vertices on ∂Π. Then, P is good
if and only if all its bounding edges
are good.

Proof. We first prove that if all the edges of P are good,
then P is good. It suffices to argue that it intersects all
eyelets κ1, . . . , κn. Let p1, . . . , pk be the vertices of P in
counterclockwise order. Any spot vi of an eyelet κi either
corresponds to some vertex pℓ of P , or lies inside some in-
terval (pℓ, pℓ+1). Since pℓpℓ+1 is good, it intersects κi.

For the converse, assume that pℓpℓ+1 is not good, which
encloses with the interval (pℓ, pℓ+1) a polygonal region R ⊆
Π \ P . Hence, there is a spot vi ∈ R such that pℓpℓ+1 does
not intersect the eyelet κi. It follows that the entire κi is
inside R (see the illustration above, considering pp′′ and κ2).
Thus, P ∩ κi = ∅, and so P cannot be good.

For u ∈ ∂Π, we define its horizon hu ∈ ∂Π as the endpoint
of the longest good segment uhu going on ∂Π in counter-
clockwise direction. Consider again the figure above: The
segment php is tangential to κ2, so if going any further than
hp on ∂Π from p, the segment would miss κ2 and thus be-
come non-good.

Lemma 23. Let P be a good polygonal region, and u ∈
∂Π. Then, P has a vertex p ∈ (u, hu].

Proof. Assume to the contrary that P has no such ver-
tex, and let p1, . . . , pℓ be its vertices on ∂Π. Let pj be the
vertex of P such that u ∈ (pj , pj+1). Then, also hu ∈
(pj , pj+1), because otherwise, pj+1 ∈ (u, hu]. Since P is
good, the segment pjpj+1 is good, too. It is not hard to see
that, consequently, both pju and upj+1 are good. However,
the latter contradicts the maximality of the horizon hu.

For an arbitrary initial vertex s ∈ ∂Π, we finally specify
a polygonal region P s by iteratively defining its vertices.
Set p1 := s. For any j ≥ 1, if the segment pjs, which
would close P s, is good, stop. Otherwise, set pj+1 := hpj .
Informally, we always jump to the next horizon until we
can reach s again without missing any of the eyelets. By
construction, all segments of P s are good, so P s itself is
good. The (almost-)optimality of this construction mainly
follows from Lemma 23.

Theorem 24. Let P be a minimal polygonal region for
Q, having OPT vertices. Then, for any s ∈ ∂Π, P s has at
most OPT + 1 vertices.

Proof. We first prove that P s has the minimal number
of vertices among all good polygonal regions that have s as a
vertex. Let s := p1, . . . , pm be the vertices of P s. There are
m− 1 segments of the form pℓhpℓ

. By Lemma 23, any good
polygonal region has a vertex inside each of the intervals
(pℓ, hpℓ

]. Together with the vertex at s, this yields at least
m vertices, thus P s is indeed minimal among these polygonal
regions.



Next, consider any minimal polygonal region P ⋆. We can
assume that all its vertices are on ∂Π by Lemma 20. If s is
not a vertex of P ⋆, we add it to the vertex set and obtain
a polygonal region P ′ with at most OPT + 1 vertices that
has s as a vertex. P s has at most as many vertices as P ′, so
m ≤ OPT + 1.

As each visit of an eyelet requires constant time, the con-
struction of a horizon is proportional to the number of vis-
ited eyelets, and there are only linearly many eyelets. Thus,
we can state:

Theorem 25. For an arbitrary initial vertex s, comput-
ing P s requires O(n) time.

Proof. We prove that computing the horizon of a point u
takes a number of operations proportional to the number of
eyelets that are visited by the segment uhu. Let us consider
an arbitrary u ∈ ∂Π. By rotating appropriately, we can as-
sume, without loss of generality, that u lies on a vertical edge
of Π (or, if u is a vertex, that the next edge in counterclock-
wise order is vertical), and that the edge is traversed top-
down. The horizon is determined by the slope of the edge at
u. Note that for each eyelet κ1, . . . , κn, there is an interval

of slopes I
(u)
1 , . . . , I

(u)
n such that the segment from u with

slope m intersects κi if and only if m ∈ I(u)
i . Furthermore,

each single I
(u)
i can be computed with a constant number of

arithmetic operations. Assuming that the next eyelet to be
travelled from the current pi is κj , we can iteratively com-
pute the intersections Ij ∩Ij+1∩Ij+2, . . . until Ij ∩ . . .∩Ij+k
is empty. In this case, we choosemi := max(Ij∩. . .∩Ij+k−1)
as the slope for the next segment, which must be pihpi since
it is good by construction, and any larger slope would pro-
duce a non-good segment. Based on this property, it is easy
to show that computing P s needs a number of operations
which is proportional to n, the number of eyelets.

5. IMPLEMENTATION
We have implemented the algorithms described in the pa-

per that are based on rational arithmetic using ready-made
procedures of Cgal’s2 polygon [21], Minkowski sum3 [23]
and Boolean set-operation [24] packages. We focus on the
two-sided decision algorithm with rational δ-approximate
constructions described in Section 3: ApproxDecideInte-
rior (Q, r, ε, δ) and ApproxDecideExterior (Q, r, ε, δ).

Recall that the input to the algorithms is a polygonal re-
gion Q, a radius r, a solution precision ε and a working
precision δ. By construction of approximate offsets and in-
sets with the working precision δ, the algorithms combined
determine whether Q is ε-close to the r-offset of an unspeci-
fied polygonal shape P and compute a three-valued answer:
YES if a valid P exists, NO if it does not, and UNDECIDED if
a certified YES or NO cannot be determined for given param-
eters. How the choice of ε and δ influences this outcome is
illustrated in Figure 5.1.

The rational δ-approximation of the disk (for the interme-
diate constructions) is created as described in Section 3, that
2The Computational Geometry Algorithms Library; see
www.cgal.org.
3Notice that we use a convolution-cycles based implementa-
tion of Minkowski sums, which is known to perform very well
in practice and in particular it was experimentally shown to
perform better than divide-and-conquer based implementa-
tions described in Section 3 on many inputs [22].

is, by selecting vertices with rational coordinates on a circle.
In the implementation we reduce the number of vertices by
greedily choosing points on the circle at maximal possible
distance from each other, keeping the resulting polygon in-
side the δ-annulus. This reduces the number of points by
about 20% to 40%. The decision procedures for the cases
depicted in Figure 5.1 (a), (b), (c) and (d) took 0.252, 0.480,
0.388 and 0.844 seconds respectively on a 3GHz Intel Dual
Core processor in our tests. See also Figure 5.2 for results
on a larger polygon.

Remark: Rational-vertex approximation of offset
polygons. We also devised and implemented a novel algo-
rithm for the approximate construction of offset polygons,
namely for the direct counterpart of the problems studied
thus far in the paper. As mentioned in the Introduction,
the exact offset of a polygonal shape whose vertex coordi-
nates are rational, with rational offset radius, can have non-
rational vertices. In contrast our new algorithm constructs
for given polygonal shape P , offset r, and tolerance ε, an
ε-approximation of offset(P, r) whose vertex-coordinates are
rational and that prefers circular arcs over piecewise-linear
approximation where the exact offset also shows circular
arcs. We refer the interested reader to the Supplementary
Material4 for algorithmic details and experimental results.

6. OPEN PROBLEMS
We have shown how to decide whether a given arbitrary

polygonal shape Q is composable as the Minkowski sum of
another polygonal region and a disk of radius r, up to some
tolerance ε. Many related questions remain open. (i) Decon-
struction of Minkowski sums seems more difficult when both
summands are more complicated than a disk; many practi-
cal scenarios may raise this general deconstruction problem.
(ii) It would be interesting to analyze the deconstruction
not only under the Hausdorff distance but for other simi-
larity measures, such as the Frêchet or the symmetric dis-
tance. (iii) Can one remove the extra vertex when seek-
ing an optimal (vertex minimal) polygonal summand P in
the convex case. (iv) Finding an optimal or near-optimal
polygonal summand in the non-convex case seems challeng-
ing. (v) As in polygonal simplification, we could also search
for the polygonal region with a given number of vertices
whose r-offset minimizes the (Hausdorff) distance to the
given shape. (vi) The offset-deconstruction problem can be
reformulated in higher dimensions. We consider especially
the three-dimensional case to be of practical relevance.
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(a) ε = 1
3
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Figure 5.1: Dependency of the algorithm outcome on ε and δ: The input polygon (wheel) appears in bold line. It is colored
according to its approximability with the given parameters: green for YES, red for NO and yellow for UNDECIDED. The inner
approximation of the offset source polygon and its approximate r + ε-offset are drawn in green and cyan respectively. Their
outer-approximation counterparts are drawn in red and magenta. Figures (a) and (b) demonstrate how when ε is tightened
from 1

3
· r to 1

9
· r, with the same r and δ, the decision result changes from YES to NO. The green polygon inside the input

polygon in (a) is a possible r-offset source. The magnification in (b) highlights the area of the input polygon that does not
fit inside the outer δ-approximation (in magenta) of maximal possible r + ε-offset. Figures (c) and (d) show how when δ is
decreased from 1

4
· ε to 1

10
· ε, for the same r and ε, the decision result changes from UNDECIDED to NO, namely in the latter

case the algorithm is able to produce a certified negative answer.

Figure 5.2: A map of Kazakhstan, represented as a polygon Q (in bold blue) with 1881 vertices, is approximable for ε = 1
2
· r

and δ = 1
8
· ε. A valid source polygon P (in green) has 335 vertices. Offset(P ,r) (shown as transparent gray r-strip around

P ) is inside the ε-offset of the input Q by construction. The δ-approximation of the ε-offset of Offset(P ,r) (as computed
in line (3) of ApproxDecideInterior (Q, r, ε, δ)) is drawn in cyan and has 261 vertices. Since the cyan polygon contains
Q, the Offset(P ,r) and Q have Hausdorff distance of at most ε, that is, Q is approximable and P is a valid source polygon.
Approximability computation took 3.868 seconds in this case. The magnification on the left highlights some cavities in
the input polygon that have no effect on the Hausdorff distance within this tolerance ε. The magnification on the right
demonstrates a sharp end that would prevent Q’s approximability with a tighter ε.
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