Distributed Computation of Persistent Homology

Ulrich Bauer®

Abstract

Persistent homology is a popular and powerful tool for cap-
turing topological features of data. Advances in algorithms
for computing persistent homology have reduced the com-
putation time drastically — as long as the algorithm does not
exhaust the available memory. Following up on a recently
presented parallel method for persistence computation on
shared memory systems [1], we demonstrate that a simple
adaption of the standard reduction algorithm leads to a variant
for distributed systems. Our algorithmic design ensures that
the data is distributed over the nodes without redundancys; this
permits the computation of much larger instances than on a
single machine. Moreover, we observe that the parallelism at
least compensates for the overhead caused by communication
between nodes, and often even speeds up the computation
compared to sequential and even parallel shared memory al-
gorithms. In our experiments, we were able to compute the
persistent homology of filtrations with more than a billion
(10°) elements within seconds on a cluster with 32 nodes
using less than 6GB of memory per node.

1 Introduction

A recent trend in data analysis is to understand the shape of
data (possibly in high dimensions) using topological methods.
The idea is to interpret the data as a growing sequence of
topological spaces (a filtration), for example, sublevel sets of
a function with an increasing threshold, or thickenings of a
point set. The goal is now to compute a topological summary
of the filtration, which can be used, for instance, to identify
features, as well as to infer topological properties of a sampled
shape. Persistent homology describes how homological
features appear and disappear in the filtration (see Section 2
for more details). Besides significant theoretical advances,
persistent homology has been used in various applications;
see [8] for a survey. The success of persistent homology
stems from its generality, which makes it applicable for
various forms of data, from its stability with respect to
perturbations [3, 6], from its ability to provide information

Institute of Science and Technology Austria, Klosterneuburg, Austria.
http://ulrich-bauer.org
TMax Planck Institute for Computer Science, Saarbriicken, Germany.
http://mpi-inf.mpg.de/~mkerber
FInstitute of Science and Technology Austria, Klosterneuburg, Austria.
http://ist.ac.at/~reininghaus

Michael Kerber'

Jan Reininghaus*

on all scales, and, last but not least, from the availability of
efficient algorithms for computing this information.

The standard algorithm for computing persistent homol-
ogy assumes the input to be a boundary matrix of a chain
complex, and proceeds by reducing that matrix using a vari-
ant of Gaussian elimination [9, 15]. The running time is cubic
in the number of simplices; this can be improved to matrix
multiplication time [12] or replaced by an output-sensitive
bound [4]. However, on the practical side, it has been ob-
served that the standard algorithm usually performs much bet-
ter on real-world instances than predicted by the worst-case
bounds, and relatively simple optimizations of the standard
method yield remarkable speed-ups [5]. Recently, Maria et
al. [2] implemented a memory-efficient and comparably fast
method for computing persistent cohomology, which yields
the same information about birth and death of features as
its homology counterpart. Further improvements have been
reported by using several processors in a shared memory en-
vironment [1] (see also [10, 11] for alternative parallelization
schemes). With these optimizations, it is often the case that
computing persistence actually takes less time than even read-
ing the input into memory. Therefore, the limiting factor is
not so much the time spent for computation but rather the
memory available on the computer.

Contribution We present a scalable algorithm for com-
puting persistent homology in parallel in a distributed memory
environment. This method permits the computation of much
larger instances than existing state-of-the art algorithms on a
single machine, by using sufficiently many computing nodes
such that the data fits into the distributed memory. While
overcoming the memory bottleneck is the primary purpose of
our approach, we aim for a time-efficient solution at the same
time.

As demonstrated by our experiments, our implementation
exhibits excellent scaling with respect to memory usage on a
single node, and even outperforms similar parallel shared
memory code in running time. This result is somewhat
surprising, since the computation of topological properties
like persistent homology is a global problem, and at first
sight it is not obvious at all that the computation can be
performed with the very simple and inexpensive pattern of
communication that our algorithm exhibits.

Our method closely resembles the spectral sequence al-
gorithm for persistent homology [7, S VII.4]. However, sev-

http://ulrich-bauer.org
http://mpi-inf.mpg.de/~mkerber
http://ist.ac.at/~reininghaus

eral adaptions are necessary for an efficient implementation
in distributed memory. Most importantly, reduced columns
are not stored in order of their index in the matrix, but rather
according to the order of their pivot, the largest index of a
non-zero entry. This allows a node to perform eliminations
in its associated rows, and to determine if a column with
pivot in these rows is reduced, without further communica-
tion with other nodes. Furthermore, we minimize the number
of messages sent through the network by collecting blocks of
messages, and we simplify the communication structure by
letting node j only communicate with nodes j + 1. Finally,
we incorporate the clear optimization [5] into the algorithm
in order to avoid unnecessary column operations.
Organization We introduce the necessary background
on persistent homology in Section 2, describe our distributed
memory algorithm in Section 3, report on experimental
evaluation in Section 4, and conclude in Section 5.

2 Background

This section summarizes the theoretical foundations of per-
sistent homology as needed in this work. We limit our scope
to simplicial homology over Z; just for the sake of simplicity
in the description; our methods however easily generalize to
chain complexes over arbitrary fields. For a more detailed
introduction, we refer to [7, 8, 15].

Simplicial complexes For an arbitrary set V, an (ab-
stract) simplicial complex K over V is a collection of non-
empty subsets of V with the property that if & € K and
0 # T C o, then T € K as well. In that case, o is called a
simplex of K, 7 is a face of o, and vice versa, o is a coface
of 7. Elements of V are called vertices of K. If V is a finite
set (as it will be the case throughout this paper), K is called a
finite simplicial complex. The dimension of a simplex o is
defined as |o-| — 1; in this case, we also call o a k-simplex. If
7 is a face of o, it is said to be of codimension ¢ if the dimen-
sions of o and 7 differ by £. The boundary of a simplex o is
the set of all faces of o of codimension 1.

Homology Homology is an algebraic invariant for an-
alyzing the connectivity of simplical complexes. Let K be
a finite simplicial complex. For a given dimension d, a d-
chain is a formal sum of d-simplices of K with Z, coeffi-
cients. The d-chains form a group C;(K) under addition.
Equivalently, a d-chain can be interpreted as a subset of
the d-simplices, with the group operation being the sym-
metric set difference. The boundary of a d-simplex o is
the (d — 1)-chain formed by the sum of all faces of o of
codimension 1. This operation extends linearly to a bound-
ary operator 04 : Cg(K) — Cyq-1(K). A d-chain y is a
d-cycle if 04(y) = 0. The d-cycles form a subgroup of the
d-chains, denoted by Z;(K). A d-chain vy is called a d-
boundary if y = 0441(&) for some (d + 1)-chain £. Again,
the d-boundaries form a subgroup B, (K) of C4(K), and
since 04-1(04(€)) = 0 for any d-chain &, d-boundaries

are d-cycles, and so B;(K) is a subgroup of Z;(K). The
d™ homology group Hy(K) is defined as the quotient group
Z4(K)/B4(K). In fact, the groups C4(K), Z4(K), B4(K),
and H;(K) are Z,-vector spaces. The dimension of H;(K)
is called the d" Betti number B4. Roughly speaking, the
Betti numbers in dimension 0, 1, and 2 count the number of
connected components, tunnels, and voids of K, respectively.

Persistence Consider a simplexwise filtration of K, i.e.,
a sequence of nested simplicial complexes) = Ko C ... C
K, = K such that K; = K;_; U {07}, where o; is a simplex
of K. We write H.(K;) for the direct sum of the homology
groups of K; in all dimensions, and we define C., Z, and
B, likewise. For i < j, the inclusion K; < K; induces a
homomorphism &/ : H,(K;) — H.(K;) on the homology
groups. We say that a class @ € H.(Kj;) is born at (index) i if

a ¢ im hf_l.
A class @ € H.(K;) born at index i dies entering (index) j if
W @) ¢ im K/ but Bl (@) € imh]_ .

In this case, the index pair (i, j) is called a persistence pair,
and the difference j — i is the (index) persistence of the pair.
The transition from K;_; to K; either causes the birth or the
death of some homology class. This homology class is not
unique in general.

Boundary matrix For a matrix M € (Z,)"*", let M;
denote its jth column and m;; € Z; its entry in row i and
column j. In this paper, we adopt the convention that both
rows and columns are indexed by {1,...,n}. For a non-zero
column M;, we define pivot(M;) = max{i : m;; # 0} and call
it the pivot index of that column. The pivot index of a zero
column is defined to be 0. When obvious from the context,
we omit explicit mention of the matrix M and write pivot(j)
for pivot(M;).

The boundary matrix D € (Zy)"*" of a simplexwise
filtration (K;)!", is the n X n matrix of the boundary operator
0x : Cu(K) — C.(K) with respect to the ordered basis
(o), of C.(K). We have D;; = 1 if and only if o is
aface of o of codimension 1. In other words, the 7™ column
of D encodes the boundary of ¢;. D is an upper-triangular
matrix, since any face of o; must precede o; in the filtration.

Matrix reduction A column operation of the form
M; «— M; + My is called a left-to-right addition if k < j.
A left-to-right addition is called eliminating if it decreases
pivot(j). A column M; is called reduced if pivot(j) cannot be
decreased by applying any sequence of left-to-right additions
to the matrix. In particular, if M; is reduced then there
is no non-zero column M; with k& < j and pivot(k) =
pivot(j). By definition, a zero column is reduced. Note
that a reduced column remains reduced under eliminating
left-to-right additions to other columns.

We call a matrix M reduced if all columns are reduced,
or equivalently, if no two non-zero columns have the same

pivot index. We call M reduced at index (i, j) if the lower
left submatrix of M with rows of index > i and columns of
index < j is reduced. A sufficient condition for column M;
to be reduced is that M is reduced at index (i,j) with
i = pivot(j).

If R is a reduced matrix obtained by applying left-to-right
additions to M, we call it a reduction of M. In this case, we
define

Pr :={(i,j) | i = pivot(R;) > 0}

Although the reduction matrix R is not unique, the set Pg

is the same for any reduction of M [7]; therefore, we can

define Py to be equal to Pg for any reduction R of M.
Persistence by reduction For the boundary matrix D of

the filtration (K;)?:1 , the first i columns generate the boundary

group B, (Kj;). This property is invariant under left-to-right
column additions. For a reduction R of D, the non-zero
columns among the first i columns actually form a basis of
B..(K;). Note that
i =dimC.(K;) = dim Z,(K;) + dim B, (K;) and
dim H..(K;) = dim Z.(K;) — dim B.(K;).

Hence, if R; is zero, we have
dim B..(K;) = dim B.(K;_1),

dimZ.(K;) =dim Z,(K;_1) + 1, and
dim H.(K;) =dim H.(K;_;) + 1,

and so some homology class is born at i. If on the other hand
R is non-zero with i = pivot(j), we have

dim B.(K;) = dim B.(K;_) + 1,
dim Z,.(K;) = dim Z,.(K;_), and
dim H,.(K;) =dim H.(K;_;) - 1.

The fact that R; has pivot i implies that R; € Z,(K;) and
hence
[Rj]; € H.(K;),

where [R;]; denotes the homology class of H. (K;) generated
by the cycle R;. The fact that it is reduced means that there is
nob € B.(K;_1) with b+ R; € Z.(K;_1) and hence

[R]; ¢ imh}_,.
We conclude that [R;]; is born at i. We even have
[Rj1j—1 & im K|
Moreover, R; is a boundary in K;_1, and so
[R;]; =0€imh/_,.

We conclude that the pairs (i,j) € Pp are the persistence
pairs of the filtration.

The standard way to reduce D is to process columns from
left to right; for every column, previously reduced columns
are added from the left until the pivot index is unique. A
lookup table can be used to identify the next column to be
added in constant time. The running time is at most cubic in n,
and this bound is actually tight for certain input filtrations, as
demonstrated in [13].

Clearing optimization Despite its worst-case behavior,
there are techniques to speed up the reduction significantly
in practice. A particularly simple yet powerful improvement
has been presented in [5]. It is based on the following
observations.

First, the reduction of the matrix can be performed sepa-
rately for each dimension d, by restricting to the submatrix
corresponding to columns of dimension d and rows of di-
mension d — 1. This submatrix is exactly the matrix of the
boundary operator d; : C4(K) — Cyz-1(K). The second
basic fact to note is that in any reduction of D, if i is a pivot
of some column j, the i" column is zero.

This leads to the following variant of the reduction
algorithm: the boundary matrix is reduced separately in
each dimension in decreasing order. After the reduction in
dimension d, all columns corresponding to pivots indices are
set to zero — we call this process clearing. Note that columns
corresponding to d-simplices have pivots corresponding to
(d — 1)-simplices. After clearing, we proceed with the
reduction in dimension d — 1.

3 Algorithm

Throughout the section, let (K i)flzl be a filtration of a
simplicial complex consisting of n simplices, represented by
its boundary matrix D. Our goal is to compute the persistence
pairs of the filtration on a cluster of p processor units, called
nodes, which are indexed by the integers {1,...,p}.

Reduction in blocks Let 0 = rpg < -+ <r; < -+ <
rp = n be an integer partition of the interval {0,...,n}. Let
the i range be the interval of integers k with r;_; < k < r;.
We define the block (i,j) of M as the block submatrix with
rows from the i row range and columns from the j™ columns
range. The blocks partition the matrix into p? submatrices.
Any block (i,j) with i > j is completely zero, since D is
upper triangular.

To simplify notation, we call M reduced at block (i, j)
if M is reduced at index (r;_1 + 1,7;). Moreover, we call M
reducible in block (i, j) if M is reduced at block (i,j — 1) and
at block (i + 1,). This terminology is motivated by the fact
that in order to obtain a matrix that is reduced at block (i, j),
only entries in block (i, j) have to be eliminated, as described
in Algorithm 1 and shown in the following lemma.

Lemma 3.1. Algorithm 1 is correct: if M is reducible in block
(i,]), then applying Algorithm 1 yields a matrix which is
reduced at block (i, j).

Algorithm 1 Block reduction

Require: input M is reducible in block (i, j)
Ensure: result M is reduced at block (i, j)

1: procedure REpuceBLock(i, j)
for each / in range j in increasing order do

add column % to column /
if pivot(/) is in range i then

2
3
4.
5
6 add column / to collection of reduced columns

while 3% such that 1 < k < [and pivot(k) = pivot(/) is in range i do

Proof. By induction on I, M is reduced at index (r;—1 + 1,1)
after each iteration of the main for loop (Algorithm 1). This
follows directly from the exit condition of the while loop in
Algorithm 1, together with the induction hypothesis and the
precondition that M is reduced at index (r; +1,7;) and hence
also at index (r; + 1,1).

Lemma 3.2. Algorithm 1 only requires access to the unre-
duced columns of M in range j and the reduced columns with
pivot in range i.

Proof. Let | be in range j and let k < [be such that
pivot(k) = pivot(/) is in range i, as in the while loop in
Algorithm 1. Then clearly column / is unreduced. Moreover,
as shown in the proof of Lemma 3.1, M is reduced at
index (r;—; + 1,1). Since pivot(k) is in range i, we have
ri—1 + 1 < pivot(k), and by assumption k < /. Hence M is
also reduced at index (pivot(k), k), i.e., column & is reduced.

Parallel reduction We now describe a parallel algo-
rithm to reduce a boundary matrix D by applying block re-
duction on all blocks (7, j) with i < j in a certain order.

The algorithm chooses a partition ro, . . ., such that all
ranges, and therefore all blocks, have roughly the same size.
It then reduces the blocks starting with the diagonal blocks
(i,i) with 1 <i < p. Indeed, note that the boundary matrix
D is (i,i)-reducible for any diagonal block (i,7). All block
reductions for diagonal blocks are independent and can be
performed in parallel. Now consider a block of the form (i, j)
with i < j. Note that this block can be reduced as soon as
blocks the (i,j — 1) and (i + 1,j) have been reduced. This
relation defines a partial order on the blocks (i, j) withi < j.
If the order of execution of the block reductions is consistent
with that partial order, the preconditions of block reduction
are satisfied in every block. Note that two blocks (i, j) and
(i’,j") can be reduced independently iff either (i < i’ and
j < jHor(i >i andj > j’). After having reduced the
block (1, p), the postcondition of Algorithm 1 yields that the
resulting matrix is a reduction of the input boundary matrix D.

Note that a special case of this block-reduction scheme
is the spectral sequence algorithm presented in [7, S VIL.4].
This algorithm sweeps the blocks diagonally, and in each
phase r € {1,...,p} of the sweep it reduces all blocks (i, j)

with j — i r — 1 in order of increasing index i. The
algorithm as described is sequential, however, as discussed
above, within a given phase r the blocks can be reduced
independently.

Distributed reduction We now describe how the data
and the workload are distributed and transferred between the
nodes.

Each node maintains a collection of reduced columns
with pivot in the i range, and it processes a package
consisting of all columns of a particular range with pivot
in range at most i. Node i processes the packages for ranges
from i to p in increasing order. After node i has finished
processing package j, its collection consists exactly of the
reduced columns in ranges i,. . ., j with pivot in the ith range,
and it sends exactly the columns in the j™ range with pivot in
range at most i — 1 tonode i — 1.

Initially, each node i loads the columns of the input
boundary matrix in range i. The following procedure is
now repeated, with j ranging from i to p. Node i performs
reduction in block (i,j); indeed, it holds all necessary
information in storage to perform this block reduction. After
the reduction, it retains the reduced columns with pivot in
range i in its collection. It sends a package to node i — 1
containing the columns with pivot in range at most i — 1 (if
i > 1), and receives a package from node i + 1 containing
the columns in range j + 1 (if j < p). Oberserve that no data
is duplicated among the nodes; each column of the matrix is
stored in exactly one node throughout the execution of the
algorithm. The union of the locally stored columns yields a
distributed representation of the partially reduced boundary
matrix.

Observe that in each iteration, node i has all the infor-
mation required to perform reduction in block (i, j), namely,
the unreduced columns in range j and the reduced columns
with pivot in range i. Moreover, the preconditions for block
reduction are satisfied, since block (i, j — 1) is reduced on the
same node i before block (i, j), and block (i + 1, j) is reduced
on node i + 1 before node i receives the unreduced columns
in range j from node i + 1. We conclude:

Lemma 3.3. If Algorithm 2 is executed on a cluster with p
nodes, it computes a reduction of the input matrix.

Algorithm 2 Distributed matrix reduction

Require: access to columns of input boundary matrix D in range j

Ensure: resulting output matrix R is a reduction of D
1: procedure REDUCEONNODE(7)
input package with columns of D in range i
for j=i,...,pdo
RepuceBrock (i, j)
if i > 1 then

if j < p then

receive package with unreduced columns in range j + 1 from node i + 1

return reduced columns with pivot in range i

2
3
4
5
6: send package with unreduced columns in range j to node i — 1
7
8
9

Note that the structure of communication between the
nodes is very simple: each node i only receives data from
node i + 1 and only sends data to node i — 1. Moreover, less
than p messages are sent between each pair of consecutive
nodes. This is highly beneficial for distributed computing, as
the communication overhead and the network latency become
negligible.

Distributed clearing The clearing optimization from
Section 2 can be implemented in the distributed reduction
algorithm with minor changes. Recall that the clearing
optimization iterates over the dimensions d in decreasing
order and processes only the columns of a given dimension d
at a time.

The ranges are defined by a single global partition
ro < ... < rp that does not change per dimension. Note
that this might cause initial column packages of different
sizes in a given dimension, even if the ranges are all of same
size. However, it has the following advantage: when node
i has performed its last block reduction for dimension d, it
knows all pivots that fall in the i range. All these pivots
corresponds to (d — 1)-simplices that create homology and
hence correspond to zero columns in any reduction. In the
next iteration, node i is initialized to process the columns of
dimension d — 1 in the i™ range. Before it starts the block
reduction, it can simply clear all columns with indices that
were pivots in dimension d. In particular, no communication
with other nodes is required.

Design rationale We justify some design choices in our
algorithm and discuss alternatives. First, we implemented
the sending of packages in Algorithm 2 in a non-blocking
fashion, i.e., a node starts receiving the next package before
it has sent and discarded its current package. Clearly, this
strategy can result can have the effect that a node holds
two package at a time, possibly causing higher memory
consumption than necessary. On the other hand, we avoid
delayed processing of packages because of a sending node

waiting for its predecessor to be ready to receive a package.

This consideration is relevant with respect to scalability of
the algorithm, since in a blocking implementation, node p

can only start sending the first package to node p — 1 after all
other nodes have finished sending their first package.

A possible strategy to reduce the overall amount of
communication would be to have node i send a unreduced
column with pivot in the k™ range to node k directly, instead
of the predecessor node i — 1. However, this approach
would complicate the communication structure and data
management significantly. Any node would have to be able
to receive unreduced columns any time, and it would not be
possible to bound the number of unprocessed columns a node
has to maintain in memory. It would also increase the number
of messages send through the network.

A somewhat dual approach to our communication
scheme would be to send the reduced columns from node
i to i + 1 instead of sending the unreduced columns from node
i toi — 1. In this variant, node i would perform reduction in
block (j,i) for j =i,i — 1,...,1. However, in this approach,
the package size would increase towards the end of the reduc-
tion, as the number of reduced columns increases, whereas
in our implementation the package size decreases together
with the number of reduced columns. Since typically most
columns are reduced early on, we expect much more data to
be sent between the nodes using this variant.

4 Experiments

Since our algorithm is, to the best of our knowledge, the first
attempt at computing persistence in a distributed memory
context, we concentrate our experimental evaluation on two
aspects. First, how does our approach scale with an increasing
number of nodes, in running time and memory consumption?
Second, how does our algorithm compare with state-of-the-art
sequential and parallel shared memory implementations on
instances which are still computable in this context?

We implemented Algorithm 2 in C++ using the Open-
MPI implementation of the Message Parsing Interface stan-
dard!. We refer to our implementation as DipHA (Distributed
Persistent Homology Algorithms). We ran it on a cluster

Twww . open-mpi.org

www.open-mpi.org

PrAT Dipua
cores/nodes 1 16 2 4 8 16 32
GRF2-256 || 10.2GB | 10.5GB || 5.8GB | 3.0GB 1.5GB | 0.8GB | 0.4GB
GRF1-256 || 10.8GB | 11.3GB || 6.1GB | 3.0GB 1.5GB | 0.8GB | 0.4GB
GRF2-512 11.8GB | 5.5GB | 3.0GB
GRF1-512 12.1GB | 6.1GB | 3.1GB
vertebral6 14.1GB | 9.8GB | 5.6GB

Table 1: Peak memory consumption for sequential and parallel shared memory (PHar, left) algorithms and our distributed

algorithm (DipHA, right)

PHAT DirHA
cores/nodes 1 16 4 8 16 32
GRF2-256 || 14.6s 5.2s || 8.9s | 5.9s 3.0s 2.3s 1.5s
GRF1-256 || 28.8s | 12.8s || 30.5 | 22.1 16.4 13.4s 11.7s
GRF2-512 31.6s 21.7s 16.1s
GRF1-512 146.8s | 116.4s | 100.5s
vertebral6 44.7s 41.6s 34.0s

Table 2: Running times for sequential and parallel shared memory (PHaT, left) algorithms and our distributed algorithm

(DrpHa, right)

with up to 32 nodes, each with two Intel Xeon CPU E5-2670
2.60GHz processors (8 cores each) and 64GB RAM, con-
nected by a 40Gbit Infiniband interconnect.

For comparison, our tests also include results for the Paar
(Persistent Homology Algorithm Toolbox) library?, which
contains efficient sequential and parallel shared memory algo-
rithms for computing persistence. Among the sequential ver-
sions, the --twist algorithm option, which is the standard
reduction with the clearing optimization described in Sec-
tion 2, together with the --bit_tree_pivot_column data
structure option, showed the overall best performance (see
the Paar documentation for more information). For parallel
shared memory, the --block_spectral_sequence algo-
rithm with the --bit_tree_pivot_column data structure
showed the overall best performance on the tested examples.
We therefore used these two variants for comparison. The
sequential and parallel shared memory algorithms were run
on a single machine of the cluster. In order to obtain a clear
comparison between the shared memory and distributed mem-
ory algorithms, in our test of the distributed algorithm only
one processor core per node was used.

For our tests, we focus on filtrations induced by 3D image
data. In particular, we used isotropic Gaussian random fields
whose power spectral density is given by a power law ||x||77.
This process is commonly used in physical cosmology as a
model for cosmic microwave background [14]. We consider
two images sizes: filtrations of images of size 256> have a
length of n = 5113 ~ 133 millions and a binary file size of
around 5GB, while images of size 5123 yield a filtration of
length n = 1023® ~ 1.07 billions and a file size of around

?http://phat.googlecode.com

40GB. The data sets are named GRFp-n, where p specifies
the power law and n specifies the image size. Note that a
lower value of p generates more difficult instances, as can be
seen from the different running times in our experiments. In
addition, we included the 5123 medical image vertebral6
from the VoLVis repository?® in our test set, a rotational
angiography scan of a head with an aneurysm.

Scalability Tables 1 and 2 show the running time and
peak memory consumption of our algorithm for images of
size 256° and 5123. We observe that the memory usage per
node is almost exactly halved when doubling the number of
nodes. For the running time, the speed-up factor is not quite
as high, but still the algorithm terminates faster when using
more nodes. Figure 1 shows a detailed plot of the running
times for each block reduction for the vertebral6 data set
on 32 nodes. In summary, this provides strong evidence that
our algorithm scales well with the number of nodes, both
regarding time and space complexity.

Comparison Tables 1 and 2 also lists the results for
the best sequential and parallel shared memory algorithms
of the PHar library. Both algorithms run out of memory
when trying to compute persistence for larger examples on
our testing machine, showing that our distributed approach
indeed extends the set of feasible instances. Moreover, we
observe that the running time on 16 nodes with distributed
memory is actually lower than that of the parallel shared
memory algorithm on a single machine with 16 processor
cores. One reason might be that the distributed system has a
much larger total amount of processor cache available than
the shared memory system. Since matrix reduction is more

3Available at http: //volvis.org

http://phat.googlecode.com
http://volvis.org

Figure 1: Running times for each block reduction in dimensions d = 3,2,1 for the vertebral6 data set. The height of each
bar indicates the time spent for reduction of the corresponding block. Left axis: block row #; right axis: block column j;

vertical axis: reduction time in seconds.

memory intensive than processor intensive, this effect may
actually outweigh the overhead of communication over the
network. This suggests that the distributed approach may be
preferable even if the solution is in principle computable in a
non-distributed environment.

Communication analysis We give more details on
the amount of data transmitted between the nodes by our
algorithm. Table 3 shows the total amount of data exchanged;
Table 4 shows the largest total amount of data transmitted
between any pair of nodes. For the more challenging
examples, the amount is in the range of GBs. Considering
the bandwidth of modern interconnects and the fact that
communication is bundled in a small number of packages, the
running time of the local block reductions dominates the time
spent for communication.

5 Conclusion

We presented the first implementation of an algorithm for
computing persistent homology in a distributed memory
environment. While our algorithm resembles the spectral
sequence algorithm for persistence computation to a large
extent, several lower-level design choices were necessary for
an efficient realization. Our approach permits the computation
of instances that were infeasible for previous methods, and
the parallelism also speeds up the computation for previously
feasible instances.

We plan to extend our experimental evaluation in future
work: We plan to test our implementation on larger clusters
to provide more evidence of scalability. Furthermore, we
want to experiment with different (unbalanced) block decom-
positions that might lead to a more balanced distribution of
the workload. Finally, one problem we encounter in bench-
marking our new approach is that persistence computation is
only the second step in the pipeline: first, one has to generate

a filtration that serves as the input for the algorithm. This
itself usually requires a massive computation, which at some
point becomes infeasible on single machines as well. We are
currently working on methods for generating filtrations of
large 3D images and Rips filtrations in a distributed memory
environment.

Acknowledgments. This research is partially supported
by the Toposys project FP7-ICT-318493-STREP and the Max
Planck Center for Visual Computing and Communication.

References

[1] U. Bauer, M. Kerber, and J. Reininghaus. Clear
and compress: Computing persistent homology in
chunks. In Topological Methods in Data Analysis and
Visualization I11. Springer, 2014. To appear.

[2] J.-D. Boissonnat, T. K. Dey, and C. Maria. The com-

pressed annotation matrix: An efficient data structure

for computing persistent cohomology. In H. L. Bodlaen-

der and G. F. Italiano, editors, Algorithms — ESA 2013,

volume 8125 of Lecture Notes in Computer Science,

pages 695-706. Springer Berlin Heidelberg, 2013.

[3] F. Chazal, D. C. Steiner, M. Glisse, L. J. Guibas, and

S. Y. Oudot. Proximity of persistence modules and their

diagrams. In SCG ’09: Proceedings of the 25th annual

symposium on Computational geometry, pages 237-246.

ACM, 2009.

C. Chen and M. Kerber. An output-sensitive algorithm
for persistent homology. Computational Geometry, 46
(4):435-447, 2013.

[5] C. Chen and M. Kerber. Persistent homology compu-
tation with a twist. In 27th European Workshop on

http://arxiv.org/abs/1303.0477
http://arxiv.org/abs/1303.0477
http://arxiv.org/abs/1303.0477
http://dx.doi.org/10.1007/978-3-642-40450-4_59
http://dx.doi.org/10.1007/978-3-642-40450-4_59
http://dx.doi.org/10.1007/978-3-642-40450-4_59
http://dx.doi.org/10.1145/1542362.1542407
http://dx.doi.org/10.1145/1542362.1542407
http://dx.doi.org/10.1016/j.comgeo.2012.02.010
http://dx.doi.org/10.1016/j.comgeo.2012.02.010
http://eurocg11.inf.ethz.ch/abstracts/22.pdf
http://eurocg11.inf.ethz.ch/abstracts/22.pdf

[6]

(7]

(8]

[9]

[10]

nodes 2 4 8 16 32
GRF2-256 5.6MB | 15.IMB | 32.5MB | 67.7MB | 136MB
GRF1-256 || 69.2MB | 218MB | 497MB 1.0GB | 2.0GB
GRF2-512 117MB | 237MB | 475MB
GRF1-512 3.6GB 7.3GB | 14.8GB

vertebral6 3.3GB 7.6GB | 15.7GB

Table 3: Total size of all packages sent over the network

nodes 2 4 8 16 32
GRF2-256 5.6MB | 5.6MB | 56MB | 65MB | 8.7MB
GRF1-256 || 69.2MB | 90.3MB | 109MB | 162MB | 238MB
GRF2-512 21.2 | 21.2MB | 21.2MB
GRF1-512 658MB | 658MB | 663MB

vertebral6 2.9GB 2.9GB 2.9GB

Table 4: Maximum total size of all packages transmitted between any pair of nodes

Computational Geometry (EuroCG), pages 197-200,
2011.

D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Stabil-
ity of persistence diagrams. Discrete and Computational
Geometry, 37(1):103-120, 2007.

H. Edelsbrunner and J. Harer. Computational Topology,
An Introduction. American Mathematical Society, 2010.

H. Edelsbrunner and J. Harer. Persistent homology — a
survey. In J. E. Goodman, J. Pach, and R. Pollack, edi-
tors, Surveys on Discrete and Computational Geometry:
Twenty Years Later, Contemporary Mathematics, pages
257-282. 2008.

H. Edelsbrunner, D. Letscher, and A. Zomorodian.
Topological persistence and simplification. Discrete
& Computational Geometry, 28(4):511-533, 2002.

R. H. Lewis and A. Zomorodian. Multicore homology.
Manuscript, 2012.

(11]

[12]

[13]

[14]

[15]

D. Lipsky, P. Skraba, and M. Vejdemo-Johansson. A
spectral sequence for parallelized persistence. 2011.
arXiv:1112.1245.

N. Milosavljevié, D. Morozov, and P. Skraba. Zigzag
persistent homology in matrix multiplication time. In
Proceedings of the twenty-seventh annual symposium
on Computational geometry, SoCG *11, pages 216-225.
ACM, 2011.

D. Morozov. Persistence algorithm takes cubic time in
the worst case. In BioGeometry News. Duke Computer
Science, Durham, NC, 2005.

J. Peacock. Cosmological Physics. Cambridge Univer-
sity Press, 1999.

A. Zomorodian and G. Carlsson. Computing persistent
homology. Discrete & Computational Geometry, 33(2):
249-274, 2005.

http://dx.doi.org/10.1007/s00454-006-1276-5
http://dx.doi.org/10.1007/s00454-006-1276-5
http://dx.doi.org/10.1007/s00454-002-2885-2
http://arxiv.org/abs/1112.1245
http://arxiv.org/abs/1112.1245
http://arxiv.org/abs/1112.1245
http://dx.doi.org/10.1145/1998196.1998229
http://dx.doi.org/10.1145/1998196.1998229
http://dx.doi.org/10.1007/s00454-004-1146-y
http://dx.doi.org/10.1007/s00454-004-1146-y

	Introduction
	Background
	Algorithm
	Experiments
	Conclusion

