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Abstract. Given an algebraic hypersurfacein RY, how many simplices are necessary for a simplicial
complex isotopic t@? We address this problem and the variant where all vertices of the compkiie

on 0. We give asymptotically tight worst-case bounds for algebraic planeesu@ur results gradually
improve known bounds in higher dimensions; however, the question fdrldminds remains unsolved
ford > 3.
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1. Introduction

A standard technique to process non-linear curves andcasia geometric systems is to ap-
proximate them in terms of a piecewise linear object (a derglcomplex). A main goal is to
preserve the topological properties of the input. Furtleeengeometric properties, such as the
position of singular or “extremal” points of the object afeen of interest. For algebraic curves
and surfaces as inputs, the former problem is usually catlpdlogy computatianthe latter
topological-geometric analysisf the object

We consider the following questiotdow many simplices are needed to embed a simpli-
cial complex inRY that is isotopic to a real algebraic hypersurface R of degree n0ur
main contribution is to provide sharp bounds for the plarssec{l = 2): for a topologically
correct representatio? (n?) line segments are needed in the worst case, and we give an al-
gorithm producingd(n?) line segments for all cases. Although the idea is simpleatsngly
does not appear in the literature yet. For geometric-tapo#b representations, we construct a
class of curves such th&(n?) line segments are necessary. This proves thatytiedrical
algebraic decompositiof8] (“Find the criticalx-coordinates of the curve; compute the fiber at
these coordinates and at separating points in betweengcbtire fiber points by straight-line
segments.” — compare Fig. 2) is asymptotically optimal sTikisurprising because the vertical
decomposition strategy seems to introduce much more lgmeets than actually necessary.

Our results can be partially generalized in higher dimersid his allows a gradual im-
provement of lower and upper bounds that can be derivedyefasih cylindrical algebraic
decomposition. Nevertheless, our bounds fail to be tigraaaly for algebraic surfaces: For
the topological approximation, we get a lower boundXin®) and an upper bound @(n°)

1 all terms will be formally defined in Section 2



2 Michael Kerber, Michael Sagraloff

triangles. For the geometric-topological approximatitirg, bounds ar@ (n*) andO(n’), re-
spectively. These gaps increase in higher dimensions bedhae lower bounds grow single
exponentially in the dimension, whereas the upper bounals double exponentially.

Related work: Efficient techniques for topology computation of algebraicves (e.g, see [9,
12], and references therein) and surfaces [4, 1] have besemied in case where the defining
polynomial f has integer coefficients. For the planar case, the complekithe problem has
been upper bounded (N'?) [11,14], whereN is defined as the maximum of the degree of
f and the bitsize of its coefficients. However, our questioh@af many segment/triangles are
needed in principal to capture the topology of the objecirse® be untreated in this context.

We remark that similar problems have been extensively stuthr 2-manifolds. For in-
stance, Nakamoto and Ota [16] show that any closed compatri2fold of genugy can be
triangulated using(g) vertices. An often discussed concept in this context igrr@aucible
triangulation of a 2-manifold, that is, a triangulation where no edge camdogracted with-
out changing the topology. It has been shown that only finitedny irreducible triangulations
exist [2], and they have been enumerated explicitly for treg [15]. Although these results
aim in a somewhat similar direction, algebraic surfacesrageneral not 2-manifolds and need
different techniques to be analyzed.

2. Basic notation and definitions

A homeomorphisrhetween two setX,Y c RY is a bijective, continuous map: X — Y whose
inverse is continuous as weK. andY areisotopicif they are “connected by homeomorphism”,
that is, there exists a continuous mgp [0, 1] x X — RY such thaty(0,-) = idy, ¢(1,X) =,
and Y(to,x) : X — Y(to,X) is a homeomorphism for any € [0,1]. ¢ is called anisotopy
betweenX andY; see also [7,6] for more details. We assume that the readamigiar with
the definition of a simplicial complex. We only considétdimensional complexes that are
embedded ifR? by fixing their vertices, and we identify the complex and theticed point set.

A (real) algebraic hypersurface in RY is the (real) solution set of an equatidr= 0 with
f € R[x1,...,Xq]. We also denote the reahnishing sebf a polynomialf by V(f) := {x ¢
RY: f(x) = 0}. Hypersurfaces in dimensions 2 and 3 are cadligeébraic curvesandalgebraic
surfacesrespectively. Thelegreeof ¢ is defined by the degree éf An isolated point pe RY
is a point ong such that an open neighborhoodmin RY does not contain any further point
of 0.

For a compact hypersurfaceé c RY, we call anisocomplef ¢ to be a simplicial complex
Sc RY that is isotopic to. We call astable isocompleto be an isocomplex that is stable at
vertices, that is, there exists an isotapybetweens’ and S such that for each vertexof S
Y(t,v) =vfor anyt € [0,1]. Computing the topology of means to compute an isocomplex,
computing a geometric-topological analysis means to caengstable isocomplex.

For unbounded hypersurfaces, one can define a (stableyngpd@owith respect to a compact
regionC to be a complex isotopic t& NC. For simplicity, we restrict to the case of compact
hypersurfaces in this work; however, the obtained bourststabld for hypersurfaces restricted
to any axis-aligned bounding box Rf'.
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3. Bounds for algebraic plane curves
3.1. Stable isocomplexes

Our main idea for deriving lower bounds is to construct atgebhypersurfaces with many
isolated points. We can even fix the location of each isolatgdt to a ball of arbitrary small
radius.

Theorem 1.For d,n € N, set c:= (L”/'ﬁ”d) —d. Then, for anye > 0, and any set of points

P1,..., Pc € QY, there exists a hypersurfacecCRY of degree n such that for any, | contains
an isolated point pe RY with ||pi — pl» < €.

Proof. The idea is to construct polynomialsfy, ..., fy of degree|n/2] that all interpolate the
points p,..., Pc, and to consider the hypersurface definedfly- f12+ ot fdz. Obviously,
degf <n, andV(f) =V (f1)Nn...NV(fy). If V(f) is zero-dimensional (that means, contains
only finitely many isolated points), the theorem is proveowdver, for certairps, ..., pc, V(f)

is not zero-dimensional for any choice of interpolationymamialsf, ..., f,; the remainder of
the proof argues that we can always use the described cotistrafter a small perturbation of
the initial points.

Firstly, almost all choices af hypersurfaces;, ..., dq in RY (of degree|n/2]) yield a zero-
dimensional intersection: consider the coefficients ofgblynomials as indeterminates, then
the (multivariate) resultarRy [10] with respect to any variable, say, is a polynomial irk; that
does not vanish identically (we writ®, because the resultant is parameterizeghin. ., gq).

We next considec pointsay, ..., qc in CY with indeterminate coordinates. We fordehy-
persurfaces, each of degrg®/2|, with indeterminate coefficients to pass through them. As a
consequence, each coefficient can be re-expressed in agmwenaf the coordinates of theg,
plus additional degrees of freedom. The same also holdddruke coefficient of the resultant
polynomial R, of these hyperplanes (we wrik, because the resultant is parametrized in the
pointsdy, .. .,qc). We will show next thaR, does not vanish identically by showing that it does
not vanish for at least one concrete choiceof . ., qc.

The degree oRy is |n/2]9. Choosed hypersurfaces, ...,gq such that the leading term
of Ry does not vanish. Then, there exist (cf. [13] for a refinedivarsf Bézout’s Theorem)
|n/2]9 intersection points in the projective spaeeC?) (counted with multiplicities), and we
can w.l.0.g. assume that all these points are distinct and lihe affine spacgq. Itis a simple
proof that|n/2|% > ¢ = (W%‘Hd) for all n,d € N (by induction ond). So, we can pickc of
the common intersection points to take the role of the pajits. ., gc from above, and set the
other degrees of freedom such that we obtin. ., gq. With this choice Ry = Ry # 0, thus,

Ry defines a lower-dimensional variety @ It follows thatRy does not vanish for almost any
choice of base pointg, . .., dc.

Thus, for given pointgy, ..., pc € QY, we find pointspy, ..., p; in an -ball around them
such that there are hypersurfacis..., fg interpolating them and such that the resultant of
f1,..., fqg does not vanish identically. It remains to argue tiat . ., p; can be chosen with real
coordinates, but this follows immediately, since otheeytbe resultant variety would contain
an open ball oRY, and consequently, it would contain the wh&f& which is impossible.

For constantl, the theorem says that we can cho@@®) arbitrary rational points and
construct an algebraic hypersurface of degraath isolated points close to them.

Theorem 2.There exists an algebraic curve C R? of degree n such that any stable isocomplex
for ¢ hasQ(n%) vertices.
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Fig. 1. lllustration of the construction in the proof of Theorem 2

Proof. We prove the claim by constructing a suitable cugveAssume first that the unit circle
is a component o7. Any isocomplex of& must contain a sequence of points on the unit
circle which forms a cycle in the complex. We cut alt= (W‘;HZ) — 2 disjoint regions of
the unit disc by intersecting the disc withdifferent lines. We place a disc of sizen each of
the regions and force an isolated point of the cuf¥#o lie inside each disc (Fig. 1 left). By
Theorem 1, this is possible ¢ is of degree at least/2.

The isotopic cycle for the unit circle component containggex in each of the regions: If
there is no such vertex, the cycle misses the region confplstethe isolated point is outside
the cycle, contradicting the properties of a stable isodem(fig. 1 middle). Hence, at least
¢ = Q(n?) vertices are placed on the unit circle.

Finally, we take a collection af/4 concentric circles to be part &f (instead of just the unit
circle) such that the lines chosen as above still cutcbdisjoint regions for any of the circles
(Fig. 1 right). This is clearly possible if all concentricaes have radius close enough to 1. The
argument from above now works separately for each of théesir¢hus, each one is divided
into Q(n?) line segments under the isotopy.

To summarize, the final curve consists of two components:comee of degree1/2 that
forces the isolated singularities in the regions and a ctitie of n/4 circles (of total degree
n/2). The union is of degrem, and any stable isocomplex requit®$n?) vertices per circle, so
Q(n%) vertices are required in total.

The upper bound o®(n®) vertices follows immediately from standard theory of algéb
curves and cylindrical algebraic decomposition [8].

Lemma 1.For any algebraic curve? C R? of degree n, there exists a stable isocomplex with
o(nd) cells.

Proof. An algebraic curve’ of degreen has up ton(n— 1) x-critical pointsp, that is, f(p) =
fy(p) = 0 by Bezout's Theorem [13]. The projections of these point®deose the-axes into
O(n?) delineable sets. This means that the fiber above each cékideécomposition consists
of finitely many (at mosh) function graphs. Inserting points in between two congeeuro-
jections and lifting each of the points in one dimension tetada stable isocomplex @f with
O(n3) points. See also Figure 2.

3.2. General Isocomplexes

We next remove the stability requirement on the isocompBoasidering an arrangement of
n lines in generic position, we observe that each pair int¢ligea point. The union of lines
defines an algebraic curve of degrewith (2) singularities. It follows:
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Fig. 2. lllustration of the construction in Lemma 1.

Proposition 1. For any ne N, there exists an algebraic curv@ c R? of degree n such that any
isocomplex fow’ hasQ(n?) vertices.

In order to establish the upper bound ©fn?) for isocomplexes of algebraic curves, we
show first that an algebraic curve decomposes into Wp(t8) points and smoottx-monotone
segments.

Definition 1. Let & C R? be an algebraic curve without vertical segments. For a poigtR?,
the branch numbersf p are a pair of integerg/p,rp) denoting the number of paths of the
curve entering from the left hand side and from the right haitt®, respectively. A point is
called event pointf its branch numbers do not equél, 1).

Lemma 2. For an event point p, we seplthe sum of its branch numbers. Then, the sum of the
bp’s for all event points is bounded @p(n—1).

Proof. For a pointp = (xp,Yo) on an algebraic plane curvé =V (f), we consider the Taylor
expansion

n

f(xy) = Z}(aiO(X—XO)i +ai1(X—%0) "y —Yo) + ... +ai(Y—Yo)')

of f atp. The smallest such that at least one of the coefficieats 0 < j <i, differs from zero
is denoted thenultiplicity my (p) of & at p. From this definition, it follows that” :=V (fy) has
multiplicity mg(p) > mg(p) — 1 at p. Furthermore, thentersection multiplicityint(&1, 02, p)
of two algebraic curve#g; = V(f) and 0, = V(g) at a pointp € C? is defined as the dimen-
sion of the vector spade[x,y|p/(f,9) whereC[x,y|p is the localization of the polynomial ring
Clx,y] at p [3]. It holds thatmg, (p) - Mg, (p) < int(O1, O, p) with equality occurring iff f
andg have no tangent line in common pt Furthermore, due to &out’s Theorem, the sum
Y peoyne, INL(O1, 02, p) of all intersection multiplicities is bounded by dég - degg).

If p= (Xo0,Yo) is not an intersection point @ and¢&” :=V (fy), thenpis adjacent to exactly
two arcs of & which are orthogonal to the gradientf (p) = (fx(p), fy(p)) at p. Thus, the
branch numbers fop are(1,1). An event pointp = (X, Yo) is an intersection point of’ and
¢’ and, hence, ifv, ¢’, p) > 1 for each event point. The arithmetic me@g +rp)/2 of the
two branch numberg, andry, at p constitutes a lower bound on the multiplicity &f at p;
this follows from the fact that, for arbitrary smal] there exists lineky =V (X — Xp + &) and
Ly=V(y—Yo+&) |&,|&| < €, that both interseaf in at least(¢p+rp)/2 points. This shows
that the first[ (¢p 4 rp) /2] —order terms of the Taylor expansion bt p vanish and, thus,

(lpt+rp) <2 5 mg(p)<2- 5 mg(p) My (p)
p event point p event point p event point
<2y int(0,0',p)<2n(n—1)
peo
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Fig. 3. Starting with the stable isocomplex of si@én®) we straighten edges which connect two non criti-
cal points. Finally adjacent straight line connections are removed. Thefilze so obtained isocomplex
reduces to the number of arcs@fconnecting two critical points, that i€©(n?).

Theorem 3.For any algebraic curves C R? of degree n, there exists an isocomplex witin)
simplices.

Proof. We consider the isocomplex returned by a cylindrical algebdecomposition algo-
rithm. It returnsO(n?) many fibers of the curves (with respect to some projectioectiion)
and connects the fiber points by straight-line segmentseSiny fiber has at mostpoints, the
complexity isO(n®). We can assume that no segment is vertical and consider thegleoas a
directed graph from left to right, with the fiber points astieas. In particular, it makes sense
to talk about then-degreeof a vertex as the number of edges that enter from the left biaied
We re-embed the graph into the plane with the following ru{g@y Each vertex remains at the
samex-coordinate, and the vertical ordering of the vertices atsamex-coordinate remains
unchanged. (2) Each edge from a vertex of in-degree 1 to anegtex of in-degree 1 must be
horizontal.

Properties (1) ensures that the result is isotopic to thgir@i complex. A complex with
properties (1) and (2) can be computed by a simple plane salgepithm (Fig. 3). Vertices
adjacent to exactly two horizontal edges are removed adiretsy and the edges are merged. Let
% denote this new complex. By construction, any maximal smrationotone segment of the
curve is represented by a polylined# with two bends, running horizontally between the two
bends. The number of edges is thus at most three times theemwhbegments of the curve
that leave a critical point. Their number is be boundedd$y?) according to Lemma 2 and,
thus, the complexity o, is alsoO(n?).

4. Higher dimensions

We show to what extent our results for curves can be geneddiizhigher dimensions. Through-
out this section, we consider > 2 to be a fixed constant — this yields bounds of the form
Q/O(n"@)) for some functiorh in d. However, one should keep in mind that the constants
hidden in theO-notation depend od. Furthermore, we still assume for simplicity that the
considered hypersurface is bounded in each coordinate.

Stable isocomplexes:The construction of Theorem 2 can be immediately transfeyedbi-
trary dimensions:

Theorem 4.For any ne N and d> 2, there exists an algebraic hypersurfage_ RY of degree
n such that any stable isocomplex iGrhas Q (nd*+1) vertices.

Proof. We cut out@(nd) disjoint sections of the unit-sphere and place an isolated point in
each region, using Theorem 1. A vertex on the unit sphere brigiaced in each region to
ensure an isotopy. The bound follows by repeating the sagarant onn/2 concentricd-
spheres of radius close to 1.
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Fig. 4. lllustration of Theorem 6 for a torus: The silhouettg is a plane curve consisting of 2 circles
(in red).Or and the fibers at critical points and points in between decompose the pddpecteding box
Br into quadrilaterals. Inserting points at the boundary and the interior ¢f elthese quadrilaterals
leads to a triangulatiofir of Br. A subset (in black, right figure) offr constitutes a stable isocomplex
for Or.

Also the upper bound construction can be generalized; hexvthe exponent increases ex-
ponentially withd. A similar construction idea has also been used in [3, Thr8]5A detailed
description for the special case of 3 dimensions can be fou.

Theorem 5.For a hypersurface  RY of degree n, there exists a stable isocomplex with
o(n®*~1) simplices.

We will prove the theorem by proving a stronger statement.

Theorem 6.Given an algebraic hypersurfacg c RY of degree n with axis-aligned bounding
box B. Then, there exist simplical complexes T amdTSsuch that

— S is a stable isocomplex of
—T triangulates B

—T has @n?'~1) simplices (and so has S)

Proof. We do induction on the dimensiah In every dimension, we will first construct a stable
isocomplexS and extend it to a triangulatioh of B in a second step without increasing the
complexity.

Ford = 2, we construct a stable isocomplex as explained in Lemmiacbnkists 0fO(n?)
simplices. Recall that in the construction, we have intredi@(n?) fibers, one for each critical
x-coordinate, and one in between two consecutive coordin@a each fiber, we add a point
between two consecutive points on the fiber, and connect divé with its neighbors by a
vertical segment. This decomposes the bounding box inpes@ds which are bounded on top
and bottom by exactly one edge, and, on the left and right,doijcal segments (cf. Figure 3
and Figure 4). Summing up the number of vertical segmentalfdrapezoids in between two
consecutive fibers, we have at m&n) segments since, on each fiber, we introduGgd)
points. We pick a poinp in the middle of a face and triangulate the face by connedgtingth
every vertex on the boundary and adding triangles accasdifgen, at mos©(n) triangles are
added for all trapezoids within two consecutive fibers, tinesbound of(n?) holds forT. We
have skipped the description of how to triangulate the baundf the bounding box, but this
is straight-forward by adding a fiber at the left and right hhdary, considering the corners as
fiber points. We skip further details.

For arbitraryd > 2, we consider the silhouette hypersurfagg:= res,(f, %), where f
is the defining equation fo@’. Let Br be the projection oB to the firstd — 1 variables. By
the induction hypothesis, there exists a triangulafigrof Bg containing a stable isocomplex
S of ORr as a subset (cf. Figure 4). Moreovég hasO(nzd*Z) simplices becausér is of
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of the 3-cylinder
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Fig. 5. lllustration of Theorem 6 for a torus ctd.: We consider the "lift” of one of thangles in the
triangulationSg. The triangleAcyc; ¢ lifts to two triangles/; and/; in 3-space (cf. left figure). We insert
points at the boundary and in the interior of the 3-cylinder betwgemd/, (cf. right figure) to obtain
a triangulation in 3-space.

degreeO(n?). We first construct an isotopy fromi to a stable isocomple® We proceed in two
steps. For the first one, legk be the isotopy betweefir andSz. We can easily extengk to an
isotopy ¢ from Bg to itself such that the vertices @k remain fixed during the transformation
(the extension is not unique, but the choice does not maitehé argument). Note that is
delineable over any cell afy, that is, the lift of each cell consists of disjoint functigraphs.
We can letgk act on& as follows: For a poinp = (p,...,p4) € €, we definegk(p,t) =
(@k((p1,---,Pd—1),t), Pd), that is, we leave thd-th coordinate fixed. This transform® into
somed”’ (which is not an algebraic set anymore). By constructi@his delineable with respect
to Tg, that is, the lift of each cell ofg with respect ta” consists of (up tm) disjoint function
graphs. We considerlasimplexA of Tr with verticescy, .. .,Ck, and one of its lifts, called.

c is uniquely defined by its “cornerss,, . . ., ¢, wherec] is some lift ofc; (cf. Figure 5). In the
second phase of the isotopy, we transfario the simplex defined by, ...,c. We can do
so simultaneously for every lift without changing the veatiorder, and without moving any
vertex. We can also rule out the case that two lifts are mapp#te same simplex since by the
way we constructr, the lifts of any cell ofTg differ in at least one vertex. This implies that the
transformation indeed is an isotopy betwe®randS. We letSdenote the isocomplex obtained
by the described two-step transformation.

Finally, we completé&to a triangulationT of B. For ak-simplexA of Tg and two consecutive
lifts /1, 2, we define thék+ 1)-cylinderC betweery; and/, to be the(k+ 1)-dimensional area
betweer?; and/,. Notice that the boundary & might also contain lifts of vertices, edges, etc.
By induction, we can assume that, above each ofkhel)—simplices on the boundary &,
there exists a triangulation of the corresponding fiber With) manyk-simplices (notice that
k < d can be treated as a constant!). Thus, the boundary € -&llL)-cylinders above\ admits
a triangulation withO(n) many elements.

We now traverse the simplices & in increasing dimension, and triangulate the cylinders
above each simplex. Lt be ak-simplex as above and dendlg, ...,Cn, m < n, the cylinders
aboveA. Then, from the above consideration, there exists a triatign of the boundary of
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eachC; and the total number d-simplices for allC; is bounded byO(n). We place a point
pi in the interior of each of the cylindelS;, and construct simplices connectipgwith all
its boundary simplices (in other word, we construct a sim@alicomplex whose link is the
boundary of the cylinder). By handling the boundary of thermbing boxB in a similar fashion,
this strategy yields a compléxthat triangulate$.

Regarding the complexity of, the number of simplices created above &smplex is at
mostO(n) since each ok-simplices on the boundary of a cylinder yields at most a tzoris
number of(k+ 1)—simplices. Hence, our bound follows from the induction hyyesis thaflr

hasO(n?"~2) simplices.

General isocomplexes:Again, the simple lower bound from Proposition 1 transfareally
into higher dimensions by considerimghyperplanes in generic position: Each setlaguch
hyperplanes intersects in a common point. The union of theetplanes yields an algebraic
hyperplane of degreewith ({) singularities. It follows:

Proposition 2.For any ne N and d> 2, there exists an algebraic hypersurfacec RY of
degree n such that any isocomplex #ohasQ (nd) vertices.

Using Theorem 3 as a base case, we can improve the upper broamd fieorem 5 slightly
for general isocomplexes:

Theorem 7.Given a (compact) hypersurfaee with axis-aligned bounding box B. Then, there
exists simplical complexes T ST such that

—Sis an isocomplex af
—T triangulates B

—T has Gn®42"-1) simplices
In particular, there exists an isocomplex férwith O(n3/ 4'2d—1) cells.

Proof. We prove the claim by induction oth. Ford = 2, Theorem 3 yields an isocomplé&x
with O(n?) simplices. To complete it to a triangulation Bf we first consider a trapezoidal
decompostion [5] oB with respect td5, that means, from every vertex, we draw vertical rays
upwards and downwards until we intersect another celb, ajr the boundary oB. This in-
troduces 2 vertical segments, and up to 2 new vertices argl mmeincrease the complexity.
We barycentrically subdivide the trapezoidal decompasijtthat means, we decompose each
edge into two sub edges and a point in its interior (we neesifthi technical reasons in the
induction because otherwise, it can happen that two lifes an edge are transformed into the
same 1-simplex ifR3). Finally, we need to triangulate each trapezoid, whichksan analogy

to Theorem 6. For higher dimensions, we use exactly the samgtraction as in Theorem 6,
and the same proof applies (note that in particular, thagu&tionSthat we construct is stable
in the coordinategs, X3, X4, . . ., X4, only thex, coordinate changes).

We remark that, in [4], it was shown that there exists a $ication of an algebraic surface
¢ in R3 with O(n°) many simply connected components. More precisely, thesgapents are
lifts of the O(n*) simply connected components of the arrangement inducetebprojected
silhouette curves’ C R?. Our "straightening idea” as presented in Theorem 3 shoatsethch
of these components can be triangulated by a constant nwhbv&ngles.



10 Michael Kerber, Michael Sagraloff

5. Conclusion

Our main contribution is to establish tight bounds for theegf stable or general isocomplexes
for algebraic curves of degree Our O(n?)-bound for a general isocomplex also improves the
complexity bound for an isocomplex in higher dimensiong, due to the projection strategy
used in the construction, the bound remains double exp@hénd. We believe that this upper
bound is not tight — it might be possible to improve it by angalation method not based
on projection. However, already for algebraic surfacesegms difficult to come up with a
simplification algorithm which provably reduces the comxileand preserves the topology at
the same time.

Another interesting variant of the problem is to further stvain the hypersurface, for in-
stance, considering algebraic curves of degreegth a bounded bitsize, with a bounded num-
ber of singularities, or similar. We remark that, althouglr gonstructions yield reducible
curves, the same bounds can be achieved with little extoatefihen restricting to irreducible
curves [14].
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