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Abstract

Nested dissection exploits the underlying topology to do ma-
trix reductions while persistent homology exploits matrix re-
ductions to the reveal underlying topology. It seems natural
that one should be able to combine these techniques to beat
the currently best bound of matrix multiplication time for
computing persistent homology. However, nested dissection
works by fixing a reduction order, whereas persistent homol-
ogy generally constrains the ordering according to an input
filtration. Despite this obstruction, we show that it is pos-
sible to combine these two theories. This shows that one
can improve the computation of persistent homology if the
underlying space has some additional structure. We give
reasonable geometric conditions under which one can beat
the matrix multiplication bound for persistent homology.

1 Introduction

Persistent homology [ELZ02] has become the standard
tool in the growing field of topological data analysis
(TDA). The underlying idea is to consider a sequence of
increasing shapes and track the homological changes of
the shapes in this process, that is, the appearance and
disappearance of holes. This information can be read off
from a (generalized) LU -decomposition of the boundary
matrix which is a combinatorial representation of the
sequence of shapes. All persistent homology algorithms
used in practice are based on matrix reduction through
row or column operations on an initially sparse bound-
ary matrix. Due to matrix fill-in, a cubic complexity
in the size of the matrix can be achieved on worst-case
examples [Mor05]. On the other hand, algorithms often
show near-linear asymptotic behavior on most realistic
inputs. It is likely that the structure of realistic exam-
ples keeps the matrices sparse during the computation,
but how can we quantify this?

Generalized nested dissection [LRT79] is a technique
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to reduce the effect of fill-in in Gaussian elimination and
related matrix reduction problems for instances which
have certain structure. Originally, the method was de-
veloped for symmetric matrices. Nested dissection inter-
prets the matrix as a graph and looks for a separator,
a subset of vertices C whose removal splits the graph
into two disconnected parts A and B. The missing con-
nections between A and B correspond to areas of the
matrix in which no fill-in will happen during the reduc-
tion, if the pivots are chosen in a suitable order. If the
graph is guaranteed to have a “good” separator (C is
small and both A and B are not too small), it can be
shown that this strategy yields matrices whose fill-in is
asymptotically subquadratic, and matrix reduction can
be performed in subcubic time.

A natural question is: can nested dissection be ap-
plied in the context of computing persistent homology?
There are several obstructions for combining these two
techniques. The first is that nested dissection is based
on graph separators, whereas persistent homology op-
erates on simplicial complexes. We therefore require a
separator theory on simplicial complexes that not only
gives the existence of separators, but also efficient al-
gorithms to find them in common instances. The sec-
ond obstruction is that nested dissection was originally
designed for symmetric square matrices, whereas the
boundary matrices in persistent homology are asymmet-
ric. While the asymmetric case has been studied (see
related work below), those techniques must be adapted
to the case of persistent homology. Finally, the third ob-
struction is that nested dissection chooses a pivot order
in the matrix reduction process to guarantee a fast run-
ning time, whereas persistent homology does not permit
arbitrary column swaps without changing the outcome.
While the effect of a column swap is well understood
for persistent homology [CSEM06], there is no previous
evidence that changing the pivot order is beneficial in
terms of algorithmic complexity.

Contributions We show how to overcome all the
obstructions mentioned above and apply the theory of
nested dissection in the context of persistent homology
computation. This combination leads to variations of
existing algorithms that yield improved worst-case com-
plexity bounds for input conditions which are satisfied
for many practically relevant inputs.



1. We extend the theory of geometric separators to
simplicial complexes, proving both that they exist
in a class of geometric complexes relevant to topo-
logical data analysis, and can also be computed ef-
ficiently. Thus, there is a notion of a β-separable
complex that is analogous to a β-separable graph,
i.e. one for which every subcomplex has a separator
of size O(nβ) that separates the subcomplex into
pieces no bigger than αn for some fixed α, β < 1.

2. We analyze a simple variant of the classic persis-
tence algorithm and show that its fill-in can be
bounded by the same techniques as used in nested
dissection. In particular, if the columns are ordered
according to a nested dissection ordering of O(nβ)-
size separators, then the fill-in is O(n1+β) and the
running time is O(n1+2β).1

3. We use the Vineyards algorithm from [CSEM06]
to transform the persistent homology of the nested
dissection order to that of an arbitrary order in
O(n2+β). The worst-case of O(n3) was the best
previously known.

4. Using the framework of the output-sensitive per-
sistence algorithm from [CK13], we show for β-
separable filtered simplicial complexes with only a
constant number of ε-persistent features, the per-
sistent homology can be computed in O(nβω) time,
where ω ≤ 2.373 is the matrix multiplication expo-
nent [LG14]. The best-known bound for arbitrary
input complexes is Õ(n2) [CK13].

Related Work Since the first algorithm for per-
sistent homology by Edelsbrunner et al. [ELZ02], many
variants have been proposed. The only uncondi-
tional subcubic complexity bound by Milosavljević et
al. [MMS11] employs fast matrix multiplication to run
in O(nω) time. Edelsbrunner and Parsa show that com-
puting Betti numbers, and thus also persistent homol-
ogy, is at least as hard as computing ranks of sparse n×n
matrices [EP14]. Chen & Kerber [CK13] give an output-
sensitive algorithm whose running time depends only on
the running time of matrix rank computations and the
number of features that persist longer than some thresh-
old; it is also the only variant with subquadratic worst-
case space complexity. Both variants lack a proof of use-
fulness in application scenarios. The currently fastest
approaches in practice are based on the cohomological
persistence algorithm by De Silva et al. [dSMVJ11] and
on heuristics of the standard reduction algorithm that
exploit the structure of the boundary matrices [CK11].

1An earlier draft of this paper was circulated that incorrectly

reported stronger bounds of O(n2β) fill-in and O(n3β) running
time.

Some algorithmic variants are analyzed in terms of addi-
tional parameters in addition to the input size, including
the total (index) persistence of the filtration [CK11], the
number of critical cells in a cubical complex [BKR14],
or the maximum Betti number among all the complexes
in the input filtration [DFW14, BDM13]; while these re-
sults partially explain the excellent behavior of persis-
tent homology in practice, the worst-case for all these
variants remains cubic in the input size. Several open
source software libraries implement variations of these
algorithms [BKRW14, Dio, MBGY14].

In this paper, we are especially interested in the
geometric case. This includes primarily filtrations
constructed on grids or quality meshes. Hudson et
al. [HMOS10] show that the persistent homology of the
Euclidean distance to a point cloud can be approxi-
mated on the type of mesh used in finite element analy-
sis. Sheehy [She11] extends this result to a large class of
Lipschitz functions. Uniform grids are also commonly
used to provide a basis for function approximations on
Euclidean domains, and are, for example, built into
some existing software libraries such as the TDA pack-
age for R [FKLM14].

Bounding fill-in during the Gaussian elimination
of sparse matrices is in general known to be NP-
hard [Yan81]. It was natural to question if it could
be bounded in special cases. Nested dissection was first
presented for regular grids by George [Geo73]. It was
generalized to arbitrary, recursively separable graphs by
Lipton et al. [LRT79], whose analysis is based on the
work of Rose et al. [RTL76] which we also employ in
our analysis. An alternative analysis was later given by
Gilbert & Tarjan [GT87] who introduced some insights
that allow one to weaken the condition on the recursive
separators. Most of the work on nested dissection has
been limited to the case of real, symmetric, positive
definite matrices. Grigori et al. [GBDD10] consider
a non-symmetric version, but do not prove explicit
bounds on the fill or the work. Another work in the same
spirit, though not explicitly about nested dissection, is
the work of Carlsson & de Silva [CdS04] on geometric
sparsity in solving linear systems. Yuster [Yus08] and
Alon & Yuster [AY13] eliminate the conditions on
symmetry and positive-definiteness while also allowing
computations over arbitrary fields.

2 Topological Background

Simplicial Complexes A simplicial complex K
is a collection of subsets, called simplices, of a vertex
set V that is closed under taking subsets, i.e. σ ∈ K
and τ ⊂ σ implies that τ ∈ K. The dimension of a
simplex σ is defined as dim(σ) = |σ| − 1, where | · |
denotes set cardinality. The dimension of a complex K



is the maximum dimension of any simplex in K. For
two simplices σ and τ such that τ ⊂ σ, we say τ is
a face of σ and σ is a coface of τ . The p-skeleton of
K is the subcomplex of K consisting of all simplices of
dimension at most p and is denoted K(p). In particular,
the 1-skeleton, K(1), corresponds to a graph.

Boundary Matrices and Homology A natural
way to represent a simplicial complexK is via a sequence
of sparse boundary matrices ∂0, . . . , ∂d. Each matrix
∂r is a nr−1 × nr matrix, where, for each i, ni is the
number of i-simplices in K. The columns correspond to
r-simplices and the rows correspond to (r−1)-simplices.
In the simplest case, where the underlying field is Z2,
the integers modulo 2, each entry (i, j) of ∂r is 1 if σi is a
face of σj in codimension 1, and 0 otherwise. The case
of ∂1 is the well-known edge-vertex incidence matrix.
Over other fields, it is normal to orient the boundary
matrix. This is a generalization of orienting a graph.
For example, in the case of ∂1, each column contains
two nonzero terms, one for each vertex in the edge, and
they take values 1 and −1 in the matrix. This oriented
boundary matrix is familiar in spectral graph theory as
∂1∂
>
1 is the so-called graph Laplacian.
A vector in Fnr is called an r-chain and the set

of r-chains is denoted Cr. Again, if F = Z2, then we
can think of an r-chain as a subset of r-simplices. This
combinatorial perspective on the matrix operations is
very useful and we will develop it more as we go . The
boundary matrix ∂r can be viewed as a linear operator
from Cr → Cr−1. Elements of the kernel of ∂r are
called r-cycles and elements of the image of ∂r are called
(r− 1)-boundaries. The rth homology group of K is the
quotient vector space

Hr(K) := ker ∂r/im ∂r+1.

It describes the r-cycles that are not boundaries of
(r + 1)-chains. Informally, it describes r-dimensional
holes that have not been filled in by (r+ 1)-dimensional
simplices. We will call these homological features. When
referring to the collection of homology groups for all
dimensions, we will write H∗(K). The Betti numbers of
a simplicial complex are defined as βr := dimHr(K).
βr can be directly computed from the ranks of the
boundary matrices via βr = nr − rk(∂r)− rk(∂r+1).

Persistent Homology and Persistence Dia-
grams Given a pair of simplicial complexes, X,Y such
that X is a subcomplex of Y , the inclusion map between
the two induces a linear map between their homology
groups, i.e.

X ↪→ Y induces H∗(X)→ H∗(Y ).

The image of such a map is the persistent homology of
the inclusion; it describes the homological features of X

that persist when including X into Y . More generally, a
filtered simplicial complex or just filtration is a sequence
of nested complexes X1 ⊆ X2 ⊆ · · · ⊆ Xn. The
persistent homology of this filtered simplicial complex
describes the persistent homological features for every
inclusion Xi ↪→ Xj for i < j.

The persistent homology is often encoded in a
persistence diagram. This diagram is a multiset of
points in R2, where a point (b, d) indicates a homological
feature that first appears in the filtration in Xb and
disappears only in Xd. b and d are referred to the birth
and death times of the feature respectively. In general,
rk(H∗(Xs) → H∗(Xt)) equals the number of features
that are born before or at Xs and that die at or after
Xt; this is the number of points in the closed upper-left
quadrant of the persistence diagram anchored at (s, t).
Alternatively, one can look at the number µst of features
born at or after Xs and dead at or before Xt; this it the
number of points in closed lower-right quadrant of the
persistence diagram anchored at (s, t). Moreover, µst is
exactly the rank of a submatrix of ∂ composed of the
lower left corner.

In practice, the common way to filter a simplicial
complex is by real-valued function f : K → R. An
example is the Čech complex, where the vertices are
points in Rd, and for a k-simplex σ = [v0, . . . , vk],
f(σ) is the radius of the minimum enclosing ball of
v0, . . . , vk. The filtration is then defined by sorting the
simplices with respect to the radius of their minimum
enclosing ball. In such cases, all simplices in Xi \Xi−1

have the same function value which we denote fi. It is
common to display the persistence diagram with respect
to the function values, that is, replacing (b, d) with
(fb, fd); sometimes, this difference is referred to as index
persistence versus function persistence. We call the
difference fd − fb the persistence of the homological
feature represented by (b, d).

3 Separating Graphs and Nested Dissection

Nested dissection is a method for ordering pivots in
Gaussian elimination of sparse matrices to reduce fill-
in and overall running time. The main idea is to treat
the matrix as a graph and order the pivots based on
recursive decomposition of the graph. We will focus first
on the graph-theoretic side of the technique and review
the concepts to the extent needed in later sections. The
central definition is that of a graph separator :

Definition 3.1. A graph G = (V,E) with |V | = n has
a (f(n), α)-separation with α ∈ (1/2, 1) if V can be
partitioned into 3 parts X, Y , and Z such that

|X|, |Y | ≤ αn, and |Z| ≤ f(n),

and also no edge of E has one endpoint in X and one



end point in Y . The set Z is referred to as a separator
of the graph G.

The quality of a separator depends on the growth of
f . Throughout this paper, we will exclusively consider
functions of the form f(n) = γnβ with β ∈ (0, 1) and
γ > 0.

Definition 3.2. A graph G is β-separable if for
some fixed α and γ, every subgraph has a (γnβ , α)-
separation.

The requirement that the separations exist for all sub-
graphs allows us to recursively separate the graph into
smaller pieces for divide-and-conquer. This is the rea-
son for the name nested dissection. For brevity in some
of the statements, we assume henceforth that β > 1/2;
while some types of graphs are 1/2-separable (in par-
ticular, planar graphs [LT79]), larger values of β seem
more common in the situations that we are considering.
V-paths and separator trees The following con-

cepts and results are taken from [LRT79]. Let G =
(V,E) be a graph and π be a numbering of its vertices,
that is, a bijective map V → [n] with [n] := {1, . . . , n}.
We call a path between vi and vj with i < j in G a
V-path, if no vertex is repeated and except for i and j,
each vertex on the path has an index smaller than i.
When the ordering is fixed, we will sometimes identify
a vertex of G and its index.

The importance of V-paths is as follows: If A
is a symmetric positive definite matrix with Cholesky
decomposition A = LLT , and G is the adjacency
graph of A, the non-zero entries of L are in one-
to-one correspondence to V-paths [LRT79, Lemma 1]
(attributed to [RTL76]), if the elimination process is
performed according to the ordering π.

To bound the number of V-paths, assume that G
is a β-separable graph. We say that G is in nested
dissection ordering, if its vertices are sorted according
to the following Numbering Algorithm [LRT79, Sec.2].
It assumes that ` vertices are already ordered with
indices larger than b and it numbers the remaining
vertices consecutively from a to b. If G has at most
n0 = (γ/(1−α))1/(1−β) vertices, we number the vertices
arbitrary from a to b. Otherwise, we split the vertex
set into (A,B,C), where C is the separator of size
O(nβ) and there is no edge connecting a vertex of
A and a vertex of B. Let i, j, k denote the number
of unnumbered vertices of A,B,C, respectively. We
number the remaining vertices of C from b − k + 1 to
b. We apply the numbering algorithm recursively on the
subgraph induced byB∪C to assign the range b−k−j+1
to b − k. Finally, we apply the numbering algorithm
recursively on the subgraph induced by A∪C to assign

the range a to b− k− j. This concludes the description
of the numbering algorithm.

The numbering algorithm gives rise to a separator
tree: it is a rooted binary tree where each node corre-
sponds to a recursive call of the algorithm. Each node
contains the subset of vertices that are numbered in the
corresponding recursive call. In particular, the root con-
tains precisely the vertices of the first separator, and
each internal node contains a subset of the separator
constructed for the corresponding point set (it is only a
subset because part of the separator may already have
been numbered in a preceding call). The leaves contain
at most n0 vertices. Moreover, all vertices stored in a
node have larger indices than all vertices stored in a
successor of that node in the separator tree.

Lemma 3.1. An internal node of the separator tree on
level ` contains at most γ(1 − ε)β`nβ vertices with
ε = (1− α− γ/(n0 + 1)1−β).

Proof. It suffices to show that on level `, the algorithm
recurses on at most (1 − ε)`n vertices; the claim then
follows from the separator size. This fact is also used
in the proof of [LRT79, Theorem 2] for the case β =
1/2, and we repeat it for completeness: Indeed, the
statement follows by induction using that (n0 +1)1−β >

n1−β
0 = γ/(1 − α), so ε ∈ (0, 1). Hence for an internal

node, n > n0 and

|A ∪ C| ≤ αn+ γnβ

= (α+ γ/n1−β)n

≤ (α+ γ/(n0 + 1)1−β)n ≤ (1− ε)n

�

We say that (simplex) k is an ancestor of (simplex)
j if either j and k are contained in the same node of the
separator tree, or k lies in an ancestor node of j.

Lemma 3.2. For any vertex j, the number of ancestors
is bounded by O(nβ).

Proof. Let N denote the node of j in the separator tree.
We just sum up the number of vertices stored in N and
all its ancestor nodes. The worst case is obtained for
the case that N is a leaf, for which we can bound the
number of vertices in N by n0 by construction, and the
number of nodes in each predecessor using Lemma 3.1.
This yields

n0 +
∑̀
s=0

γ(1− ε)βsnβ ≤ n0 + γnβ
∞∑
s=0

(1− ε)βs = O(nβ).

�



From the properties of the separator tree, a V-
path from j to k implies that k is an ancestor of j.
Using Lemma 3.2, it follows that the number of V-paths
with j as lower endpoint is bounded by O(nβ). This
immediately yields a total bound of O(n1+β) for all V-
paths. However, this bound is not optimal:

Lemma 3.3. Let G be a β-separable graph and let its
vertices be in nested dissection ordering π. Then, the
number of V-paths is O(n2β).

Proof. The number of V-paths is bounded in [LRT79,
Theorem 2] to bound the fill-in of a Cholesky decompo-
sition. More precisely, the result is exposed for β = 1/2,
but extends to β > 1/2 as mentioned in [LRT79, Theo-
rem 6-9]. �

4 Separators on Simplicial Complexes

Given a symmetric, n× n matrix M , the graph of M
is the n vertex graph with edges corresponding to the
nonzero entries of M , i.e. GM = ([n], {(i, j) : Mij 6=
0}). With this definition, the notions of separators and
β-separability carry over to symmetric matrices in a
natural way. For simplicial complexes, we can define
a symmetric graph for a fixed dimension as follows:

Definition 4.1. The p-skeleton graph of a simpli-
cial complex K is the graph whose vertices are the
p-simplices of K and whose edges are the pairs of p-
simplices that have a common (p− 1)-dimensional face.
It is denoted GK(p) .

Recall the notion of the pth boundary matrix ∂p of
K. Clearly, ∂>p ∂p is a symmetric np × np-matrix, and it
is not hard to see that GK(p) = G∂>

p ∂p
, where the matrix

multiplication is performed over an arbitrary base field
F. We remark that the same holds true when we include
a diagonal matrix R with non-zero diagonal entries in
the symmetrization as in ∂>p R∂p.

Definition 4.2. A simplicial complex K is β-
separable if GK(p) is β-separable for all p ∈ N.

β-separable complexes have favorable algorithmic prop-
erties that we will analyze in later sections. The natural
first question is how common they are. We show that
separability of a simplicial complex is implied by the
separability of its 1-skeleton, if all vertices have bounded
degree.

Theorem 4.1. Let K be a d-dimensional simplicial
complex for some constant d and let G be its 1-skeleton.
If G is β-separable and has maximum degree ∆ = O(1),
then K is β-separable as well.

Proof. It will suffice to show that for every positive
integer p ≤ d and for every subgraph H of GK(p) , that H
is β-separable. Fix any such p and H. The vertex set of
H is a set T of p-simplices. The set V =

⋃
T contains

all vertices of K that are also vertices of simplices in
T . Let m = |T | and let n = |V |. Let ∆p ≤

(
∆
p

)
be

an upper bound on the number of p-simplices of T that
contain any one vertex. It follows immediately from the
definitions that

(4.1)
m(p+ 1)

∆p
≤ n ≤ m(p+ 1).

Since G is β-separable, the subgraph of G induced
on V has a (γnβ , α)-separation (XV , YV , ZV ). We can
“lift” this separation to a separation of H by letting
XT and YT be the simplices of T whose vertices all lie
in XV and YV respectively. The remaining simplices of
T are assigned to ZT . Since K is a simplicial complex,
this partition of T gives a separation, as there can be
no common (p − 1)-simplex in XT and YT since their
vertex sets are disjoint. It only remains to check that the
separation is balanced, i.e. |XT |, |YT | ≤ α′m for some
α′, and that the separator is small, i.e. |ZT | = O(mβ).

Without loss of generality, assume |XT | ≥ |YT |. We
will prove that the separation of H is balanced for a
constant α′ = 1− 1−α

∆p
.

|XT | = m− |YT ∪ ZT |

[(XT , YT , ZT ) is a partition of the m simplices of T ]

≤ m− 1

p+ 1
|YV ∪ ZV |

[each vertex of V is in a p-simplex of T ]

≤ m− 1

p+ 1
(1− α)n

[(XV , YV , ZV ) is α-balanced]

≤ m
(

1− 1− α
∆p

)
[
m(p+1)

∆p
≤ n by (4.1)

]
= α′m.

[ by our choice of α′].



Bounding the size of the separator is similar.

|ZT | ≤ ∆p|ZV | [each t ∈ ZT contains a vertex in ZV ]

≤ ∆pγn
β

[
ZV is an (γnβ , α)-separator

]
≤ ∆pγ(m(p+ 1))β [n ≤ m(p+ 1) by (4.1)]

= O(mβ). [∆p, γ, and p are constants]

�

There is naturally some degradation in the quality
of the separator in terms of α and γ as the dimension
increases, but this degradation does not affect the
exponent in the separator size.

Geometric separators. We introduce some
known results on computing geometric separators
and show how they apply to the class of complexes
that we are most interested in. Although the results
in the rest of the paper only assume the underlying
complex is β-separable, we give some sources of such
complexes. Indeed, they are related to complexes
already considered in the topological data analysis
literature, namely Delaunay triangulations of nicely
spaced points. As we show below, for d-dimensional
inputs β = 1 − 1/d as might be expected from
the corresponding d-dimensional geometric graph
separators.

Definition 4.3. Given a collection of interior disjoint,
closed balls B = {ball(pi, ri) | i ∈ [n]} in Rd and a
constant α ≥ 1, the α-overlap graph of B is the graph
with vertex set {p1, . . . , pn} and edge set

{(pi, pj) | ball(p1, ri) ∩ ball(pj , αrj) 6= ∅
and

ball(p1, αri) ∩ ball(pj , rj) 6= ∅}.

Equivalently, (pi, pj) is an edge of the α-overlap graph
if and only if ‖pi − pj‖ ≤ min{ri + αrj , αri + rj}.

Theorem 4.2. (Miller et al. [MTTV98]) If G is
a subgraph of an α-overlap graph in some fixed dimen-
sion d, then an (O(n1− 1

d ), 1− 1
d+2 )-separation of G ex-

ists and can be computed with high probability in ran-
domized linear time.

The algorithm in the Miller et al. paper works by
finding an approximate centerpoint (a kind of geometric
median) of the centers of the balls defining the overlap
graph after mapping them stereographically onto the
sphere in Rd+1. Then after an appropriate transforma-
tion, the separation is defined by a random great circle
on the sphere. Thus, the algorithm does not need the
radii, just the locations of the points. Moreover, the

centerpoint can be found by sampling, because a center-
point of a random sample is an approximate centerpoint
of the whole set with high probability.

We recall some notions from computational geome-
try. Given a finite set of points P ⊂ Rd, the Voronoi di-
agram splits Rd into (closed) polytopes, called Voronoi
regions, where the Voronoi region Vq of q consists of all
points in Rd that are at least as close to q as to any other
point of P . For Vq, let the in-radius r(q) be the maximal
radius of a ball centered at q that is contained in Vq and
let the out-radius R(q) be the minimal radius of a ball
centered at q that contains all boundary vertices of Vq.
We say that P is τ -well-spaced if R(q)/r(q) ≤ τ for each
q ∈ P . A relatively simple packing argument shows that
for a set of τ -well-spaced points, each Voronoi region in-
tersects k(τ, d) other Voronoi regions, where k(τ, d) is a
constant independent of n.

The dual of the Voronoi diagram is the Delaunay
triangulation, DelP . We define it as a simplicial complex
with vertex set P , where a simplex σ is in DelP if
the corresponding Voronoi regions intersect. When no
k + 3 points of P lie on a common k-sphere for k < d,
the Delaunay triangulation is d-dimensional and has a
natural embedding in Rd. If this condition is not met,
there are known ways to perturb the points to make it
so [EM90].

Theorem 4.3. Let P be a set of τ -well-spaced points

for some constant τ . Then, Del
(1)
P is the subgraph of

a (2τ − 1)-overlap graph. In particular, the Delaunay
triangulation of P is β-separable with β = 1− 1/d.

Proof. Consider the overlap graph G defined by
{(p, r(p)) | p ∈ P}. Let (p, q) be an edge of DelP . With-
out loss of generality, we may assume that r(p) ≥ r(q).
We observe that

‖p− q‖ ≤ 2R(q) ≤ 2τr(q) ≤ r(p) + (2τ − 1)r(q),

so the edge belongs to G, proving the first part.

Combining the first part with Theorem 4.2, Del
(1)
P

is (1 − 1/d)-separable. Moreover, each vertex of Del
(1)
P

has constant degree for well-spaced points. Therefore,
Theorem 4.1 asserts that the separability extends to all
dimensions. �

5 Fill and Work in a Persistence Algorithm

We show that the technique of nested dissection also
applies to the problem of persistence computation via
matrix reduction. This gives a method for computing
the homology of a large class of geometric simplicial
complexes faster than matrix multiplication time.

Matrix Reduction For a matrix R, define
lowR(j) to be the maximum i such that Rij is nonzero,



i.e. it is the lowest nonzero (also called pivot). We say
that R is reduced if lowR(j) 6= lowR(k) whenever j 6= k.
If the matrix R = ∂U for a boundary matrix ∂ and a
unit upper triangular matrix U , then we say that R is
a reduced boundary matrix of ∂. The persistence dia-
gram of ∂ is the set of pairs (lowR(j), j). The matrix
reduction that computes R can be done in any of sev-
eral ways, and although the matrix R is not unique,
the pairs (lowR(j), j) are unique [EH10]. We present
a simple algorithm for computing persistence that we
refer to as the persistence algorithm in this work (Al-
gorithm 1). The reduction strategy resembles the an-
notation algorithm [DFW14, BDM13] as well as the re-
duction implicit in the fast matrix multiplication algo-
rithm [MMS11].

Algorithm 1 The persistence algorithm

1: procedure Matrix reduction(∂)
2: R← ∂
3: U ← I
4: for j = 1, . . . , n do
5: if Rj 6= 0 then
6: i← lowR(j) . lowest nonzero index
7: for each k > j with Rik 6= 0 do
8: c← Rik/Rij
9: Uk ← Uk − cUj

10: Rk ← Rk − cRj
11: return R

The algorithm processes columns from left to right,
finding the lowest nonzero element and zeroing out
the rest of the row by column operations. Upon
termination, R will be reduced and U will be unit upper
triangular. The algorithm runs in O(n3) time on an
n× n boundary matrix.

Define the fill, denoted fill(M) as the number of
non-zero entries of matrix M . By a careful choice of
the data structures in Algorithm 1, we can bound the
running time of the algorithm in terms of the fills of R
and U . A major difference between this analysis and
the classic setting of nested dissection is that the input
matrix ∂ is not symmetric.

The complexity of three substeps of the algorithm
depend on the underlying data structure of the matrix:
how to find the lowest entry of a column, how to
find all columns with a non-zero entry at row i, and
how to perform additions efficiently. We represent the
matrix as a collection of hash tables, one for each
row and column, containing the non-zero entries of the
corresponding row and column. We refer to them as row
tables and column tables. We assume that collisions are
handled through chaining, so that inserting, deleting,
and searching for elements all take expected constant

time (amortized) [MS08, §4.2].
We find the lowest entry of a column simply by

a linear scan of the corresponding hash table. The
accumulated cost for that is fill(R), because the lowest
entry is sought for exactly once per non-zero column of
R. Finding the indices of the columns that Rj is added
to is done through a scan of the row table and the cost
for that is dominated by the subsequent additions. One
such column addition updating Rk scans the column
table of j and searches for each row index ` in the
column table of k. If ` is not present, an entry is created
(with the appropriate coefficient), and an index k is also
added to the row table of `. If present, the coefficient is
updated. In case of a cancelation, the entry is removed,
and k is also removed from `’s row table. Clearly, all
these operations can be done in expected constant time
per entry.

With these data structures, the running time is
dominated by the column additions in the inner loop.
Recall the notion of pth skeleton graphs (Definition 4.1)
and let G := GK(p) . The major insight with respect to
Algorithm 1 is that the inner loop executes at most once
for each V-path of G as shown in the following lemma.

Lemma 5.1. If Algorithm 1 does a column operation for
columns j and k (one execution of the inner loop), then
there exists a V-path between σj and σk in G.

Proof. Say that columns Ry and Rz are adjacent if there
exists x such that both Rxy 6= 0 and Rxz 6= 0. Observe
that in Algorithm 1, a column operation for j, k implies
that Rj and Rk were adjacent at the start of the jth
iteration of the outer loop. Specifically Rij 6= 0 and
Rik 6= 0. We will prove the lemma by induction on j,
showing that in the j-th iteration, all column additions
of Rj to Rk imply a V-path between σj and σk. For
that, we maintain the stronger invariant that at the
start of the j-th iteration, two columns Ry and Rz with
j ≤ y < z are adjacent only if there is a V-path from σy
to σz in G such that every internal node on the path is
numbered less than j.

The base of the induction is the start of the first
iteration of the outer loop, at which point R = ∂. In this
case, the only adjacent columns are those corresponding
to adjacent simplices in G. A single edge is a V-
path with no internal nodes, so the hypothesis is easily
satisfied in this case.

For the inductive step, let Ry and Rz with j ≤ y < z
be adjacent at the start of iteration (j + 1), and let x
be such that Rxy 6= 0, Rxz 6= 0. If these columns were
adjacent at the start of iteration j, then the desired
V-path exists by induction, so assume that were not
adjacent at the start of iteration j. Iteration j only
changes columns by adding multiples of Rj , so it must



be that Rxj was nonzero at the start of the iteration.
It follows that Rj and Ry were adjacent at the start of
iteration j because either Rxy was nonzero or there was
a column operation adding Rj to Ry and thus Riy was
nonzero (with i = lowR(j)). By the same argument, Rj
and Rz were adjacent at the start of iteration j. So, by
induction there exists a pair of V-paths, one from σy to
σj and another from σj to σz, both of which have all
internal nodes numbered less than j. The concatenation
of these two paths is a new V-path from σy to σz with
all internal nodes numbered less than j + 1. �

Let K be a β-separable simplicial complex (Defini-
tion 4.2). We call a filtration of K a nested dissection
filtration, if for any dimension p, the filtration orders the
p-simplices such that (the adjacency graph of) ∂Tp ∂p is
in nested dissection ordering, where ∂p is the pth bound-
ary matrix of K.

For the next lemma, recall the definition of the
separator tree from Section 3. We defined a (simplex)
k to be an ancestor of (simplex) j if either j and k are
contained in the same node of the separator tree, or k
lies in an ancestor node of j.

Lemma 5.2. For a β-separable simplicial complex with
a nested dissection filtration, if Ujk 6= 0, k is an ancestor
of j.

Proof. We prove the statement by induction on k. For
k = j, k is clearly an ancestor of itself. Let k > j and
Ujk 6= 0. When the algorithm starts, Ujk = 0 because
U starts as diagonal matrix. Let ` < k be the iteration
of the algorithm for which Ujk becomes non-zero for
the first time. This implies that Uj` 6= 0 and that the
algorithm adds column ` to column k. By induction,
Uj` 6= 0 means that ` is an ancestor of j. Because
column ` is added to column k, Lemma 5.1 implies that
there is a V-path from ` to k. By the properties of the
separator tree, k is an ancestor of `. By transitivity k
is an ancestor of j. �

Lemma 5.3. For a β-separable simplicial complex with
a nested dissection filtration

fill(U) = O(n1+β).

Proof. By Lemma 5.2, Ujk 6= 0 implies that k is an
ancestor of j. Lemma 3.2 shows that each j has O(nβ)
ancestors, which proves that each row of U has O(nβ)
non-zero entries. �

Theorem 5.1. For a β-separable simplicial complex
with a nested dissection filtration and any dimension p,
Algorithm 1 runs in O(n1+2β) time and O(n1+β) space.

Proof. For the running time, it suffices to apply
Lemma 5.1 and Lemma 3.3 to conclude that one must
do at most O(n2β) column operations. In the worst
case, each column operation requires O(n) time, so the
O(n1+2β) total running time follows.

The bound on the space comes from bounding the
fill in the matrices R and U . Lemma 5.3 bounds fill(U).
We can bound fill(R) by (p+ 1) ·fill(U). Since R = ∂U ,
the k-th column of R is equal to a linear combination
of columns of ∂, given by the k-th column of U . Since
each column of ∂ has at most p+1 non-zero entries, the
k-th column of R has at most p + 1 times the number
of non-zero entries of the k-th column of U . Summing
over all the columns yields the result �.

6 Vineyards in Separable Complexes

In the preceding section, we showed that if the input
filtration corresponds to a nested dissection order, then
the nested dissection analysis can be used to bound
the fill-in and running-time of a simple persistence
algorithm. However, one is usually interested in
the persistent homology of a fixed filtration which is
in general different from a nested filtration ordering.
We show that converting a reduced matrix for a nested
dissection order into a reduced matrix for any other
filtration can be done in O(n2+β) time. Even though
this bound is worse than the best known complexity
bound of O(nω) for persistent homology [MMS11], it
leads to a persistent homology algorithm that is purely
based on elementary reductions and yields a subcubic
bound for a large class of instances.

We consider the following task in this section. As-
sume that we want to compute the persistent homol-
ogy of ∂ := ∂p with respect to an arbitrary filtration
f . Moreover, assume that the simplicial complex is β-
separable, and a nested filtration ordering π of the sim-
plices is known. We order the rows of ∂ in f -order and
the columns of ∂ in π-order. Observe that the results
of the preceding section hold for any row order of the
matrix. Therefore, using Algorithm 1, the reordered
boundary matrix can be reduced in O(n1+2β) time.

To get the columns from π into f -order, we
employ the vineyard algorithm of Cohen-Steiner et
al. [CSEM06] which updates a reduced matrix in worst-
case linear time after transposing the ordering of a single
pair of adjacent simplices in a filtration. Because O(n2)
transpositions might be necessary from π to f , it seems
that O(n3) is the best one could hope for. However,
O(n) time is not necessary for many transpositions.

To show that, we have to define the sequence of
transpositions carefully. Recall the separator tree of
nested dissection from Section 3. Let C denote the
simplices stored in some tree node, and let A, B



denote the simplices stored in the left and right subtree,
respectively. Note that in π, all columns of A precede
all columns of B, which in turn precede all columns in
C. We first recursively bring A in f -order, then we
bring B in f -order. Next, we bring A∪B in f -order, by
transposing the columns in B with predecessors until
they end in the correct position. Note that this step
only transposes A-columns with B-columns, and we call
this an A-B-swap. Finally, we bring (A ∪ B) ∪ C in f -
order by transposing the columns in C with predecessors
until they are in the correct position. That ends the
description of the transformation sequence. To bound
the cost, we only have to note:

Lemma 6.1. An A-B-swap takes O(1) time.

Proof. Let R,U be the matrices constructed in the
persistent homology algorithm for nested dissection
order in Section 5. Note that R = ∂U .

Let i < j be the indices of the simplices involved
in the swap. Since i and j lie in disjoint subtrees
of the separator tree, Lemma 5.2 implies that Uij is
zero. Inspecting the case distinction of the Vineyard
algorithm [CSEM06, Sec.3], we observe that case 1 can
be disregarded because it repairs only the effect of a row
swap, and the only possible cases are 2.2, 3.2, and 4. All
these cases require only constant time. �

Let Cost(n) denote the cost function for the trans-
positions with n = |A∪B ∪C|. The recursive calls cost
Cost(|A|)+Cost(|B|), and the A-B-swaps cost O(n2) at
most. Finally, to move a column of C to the correct po-
sition, at most n−1 transpositions are needed, and each
such transposition costs O(n) in the worst case. Since
|C| = O(nβ), the total cost for moving the C-columns
is O(n2+β). Therefore, the transposition cost satisfies
the recurrence

Cost(n) = cn2+β + Cost(n1) + Cost(n2),

with n1 + n2 ≤ n and n1, n2 ≤ αn for some α < 1.
A simple inductive proof shows that Cost(n) ≤ c′n2+β

with c′ = c/(1 − α2+β − (1 − α)2+β). We can thus
summarize as follows.

Theorem 6.1. Given a β-separable complex K with a
nested dissection ordering π and any filtration f on K.
There is a sequence of transpositions that transforms the
columns from π-order to f -order for which the Vineyard
algorithm only requires O(n2+β) time.

As the complexity of the vineyard transformation
dominates the complexity of persistence computation
for π-order, we arrive at the following running time
bound.

Theorem 6.2. Given a β-separable complex K with a
known nested dissection ordering π and any filtration f
on K. There is a combination of Algorithm 1 and the
Vineyard algorithm which computes persistent homology
in O(n2+β) time.

7 The Output-Sensitive Algorithm

The output-sensitive algorithm from [CK13] reduces
persistence computation to rank queries over subma-
trices of the boundary matrix. We will show in this
section that for β-separable complexes, nested dissec-
tion can improve the asymptotic running time for the
output-sensitive algorithm. When the number of highly
persistent features is small, it gives an asymptotic im-
provement over the algorithm in the previous section.

Persistence via rank computation. We first
revisit the algorithm from [CK13]. Recall our notation
of ∂ for the boundary matrix in fixed dimension p.
Assume for simplicity that ∂ is a m × n matrix with
m ≤ n. For row indices i1 ≤ i2 and column indices
j1 ≤ j2, let µj1,j2i1,i2

denote the number of homology classes
which are born in the index range [i1, i2] and die in the
index range [j1, j2]. The key observation is that µ can be
computed with four rank computations of submatrices
of ∂ using the following formula.

µj1,j2i1,i2
= rk

(
∂i1,j2i1,j2

)
− rk

(
∂i1+1,j1−1
i1+1,j1−1

)
− rk

(
∂i2+1,j2
i2+1,j2

)
+ rk

(
∂i2+1,j1−1
i2+1,j1−1

)
.

Moreover, if µ > 0, the birth-death index pairs in the
range can be computed by binary search, where the cost
in each iteration corresponds (asymptotically) to the
cost of computing µ. Therefore, the cost to compute
one persistence pair is roughly bounded by R(n) log n,
where n is the size of the matrix and R(n) is the cost
to compute the rank of ∂.

Finally, the algorithm avoids the computation of
low-persistence points. This is achieved by computing
µj1,j2i1,i2

only if the birth and death range have sufficient
difference in function value. For fixed Γ > 0 and 0 <
δ < 1, the algorithm detects all persistence pairs of per-
sistence at least Γ in time O((1/δ+C(1−δ)Γ log n)R(n)),
where C(1−δ)Γ is the number of persistence pairs of per-
sistence at least (1−δ)Γ. The main primitive computed
by the algorithm is ranks of submatrices. In [CK13], de-
terministic and randomized variants are discussed. In
the deterministic case, R(n) = O(nω) [IMH82], result-
ing in a complexity of O(C(1−δ)Γn

2.373). This is asymp-
totically inferior to the asymptotically best known per-
sistence algorithm that runs in O(nω) time [MMS11].
However, using Wiedemann’s algorithm [KDS91] to
compute ranks yields a randomized, Monte-Carlo al-
gorithm for the Γ-persistent homology that runs in



Õ(C(1−δ)Γn
2) time, where Õ means that logarithmic

factors in n are ignored.
Yuster’s method. Fix an arbitrary m×n matrix

M over a finite field, and consider the task to compute
rk(M). A first idea is to instead compute the rank of the
symmetric matrix MTM using nested dissection. Over
R or Q, it is always true that rk(M) = rk(MTM), but
this is not generally true over finite fields. Moreover,
the nested dissection algorithm can get stuck if a
zero appears in a diagonal entry during the Gaussian
elimination, but the corresponding row/column is not
completely zero.

Yuster [Yus08] proposes the following technique to
overcome these problems. Instead of computing the
rank of MTM , he proposes to compute rk(MTRM),
where R is a diagonal matrix with diagonal elements
chosen uniformly at random. To have sufficiently
many elements to chose from, an extension field of
the base field must be chosen. It is known that the
rank does not change when switching to an extension
field. Specifically, with the base field containing q
elements, we need the extension field to contain at least
2 max{n,m}2 elements. We slightly rephrase Yuster’s
result [Yus08, Lemma 3.5].

Lemma 7.1. A randomly chosen matrix R yields with
probability at least 1/2 a matrix MTRM such that
rk(M) = rk(MTRM) and MTRM is pivoting-free, that
is, the algorithm will never encounter a zero diagonal
entry with a non-zero row/column.

Consequently, the nested dissection algorithm ap-
plied to MTRM will compute rk(M) correctly. It is
also not hard to prove that in all cases, the nested dissec-
tion algorithm returns a number that is at most rk(M).
Thus, by choosing λ random matrices R independently,
the success probability can be boosted to 1− 2−λ.

Fast ranks for β-separable complexes. Fix a β-
separable simplicial complex and consider the case that
M = ∂j1,j2i1,i2

as encountered in the output-sensitive algo-
rithm. We compute the rank of M with Algorithm 2.
By the previous paragraph, the algorithm returns the
correct rank with probability 1− 2−λ. We will analyze
its running time next.

The first observation is that the ordering π is in fact
a nested dissection ordering for the graph of MTRM ,
just because the graph is the same for each R (if no ri is
chosen to be zero). Consequently, the nested dissection
algorithm terminates in O(nωβ) steps [Yus08, Lemma
3.6], where n is the number of columns of M .

The second observation is that G = GMTRM can
be computed in O(n+ #{edges of G}), for any random
matrix R. Indeed, traverse the rows of M in any order.
For a row i, compute the column set Ci that has a non-

Algorithm 2 Rank algorithm

1: procedure Nested dissection rank(∂j1,j2i1,i2
)

2: ComputeMTM and a nested dissection ordering
π for it

3: r = 0
4: for j = 1, . . . , λ do
5: Choose R = diag(r1, . . . , rn) u.a.r.
6: Compute MTRM
7: Apply nested dissection with ordering π on
MTRM . Let r′ be the rank obtained.

8: r ← max{r, r′}
9: return r

zero entry in row i. The corresponding simplices all
share the same codimension one face; consequently, the
vertices of Ci form a clique in the graph of MTRM .
Moreover, each edge of G is constructed only once
because two simplices share at most one codimension
one face. This implies the runtime bound.

Finally, we observe that G is β-separable by assump-
tion, and Lemma 3.3 implies that its number of edges
is bounded by O(n2β). Consequently, since ω ≥ 2, the
complexity of computing MTRM is dominated by the
cost of the nested dissection algorithms. We summarize:

Lemma 7.2. Algorithm 2 computes the rank of M in
O(S(n) +λ ·nωβ) time with success probability 1− 2−λ,
where S(n) is the cost to compute the nested dissection
ordering for M .

To apply the rank predicate in the output-sensitive
persistence algorithm, λ must be set large enough to
guarantee that no rank computation will fail in the
execution. To ensure this property with a constant
probability, roughly λ = O(log n) is sufficient (see the
discussion preceding [CK13, Thm.14] for the precise
statement). We can therefore summarize:

Theorem 7.1. For a filtration on a β-separable simpli-
cial complex of size n, there is a Monte-Carlo algorithm
with fixed success probability to compute all persistence
pairs with persistence at least Γ in time

Õ(C(1−δ)Γ(S(n) + nωβ)),

where δ > 0 is a fixed constant, C(1−δ)Γ is the number
of persistence pairs with persistence at least (1 − δ)Γ,
S(n) is the complexity of computing a nested dissection
order,and Õ means that we ignore logarithmic factors
in n.

In particular, if Γ is chosen such that C(1−δ)Γ is
small (say, a constant or O(log n)), if separators can be



computed efficiently (say in O(nωβ)), and if β is smaller
than 2

ω ≈ 0.843, this algorithm computes the relevant
persistence pairs in subquadratic time.

8 Conclusion

We have drawn a connection between nested dissection,
a method for ordering pivots in Gaussian elimination,
and persistent homology. This method takes advantage
of additional geometric structure in the form of sep-
arators, which occurs in a natural class of geometric
complexes to improve running time. We showed that,
under this condition, a simple variant of the persistence
algorithm provably runs in subcubic time. Since this ap-
proach fixes the ordering of computation, it is only gen-
erally applicable for computing static homology. We ex-
tended these results to show that the vineyard algorithm
for updating persistence, can turn the restricted order-
ing into any desired filtration ordering in subcubic time
on separable complexes, thus giving a guaranteed sub-
cubic time persistence algorithm without resorting to
dense matrix methods. Finally, we showed that nested
dissection can also be combined with the Chen-Kerber
algorithm for output-sensitive persistence computation,
as the individual rank computations in that algorithm
can be computed by nested dissection. There are several
open problems and directions to consider:

• Can the running time bound for persistence be
improved to O(n3β) or O(nωβ) on β-separable
filtrations? Can a single dissection ordering be
used in the output sensitive algorithm, rather than
computing separators for each submatrix?

• Approximation of persistence has been shown to
improve space and time bounds. If we consider the
L∞ distance on filtrations, are there a large classes
of filtrations which are ε-close to nested dissection
orderings? That is, can we always find a nested
dissection ordering which is ε-close to any filtration,
or at least a general class of filtrations?
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