
Arrangements on Parametric Surfaces II:
Concretizations and Applications

Eric Berberich, Efi Fogel, Dan Halperin,

Michael Kerber and Ophir Setter

Abstract. We describe the algorithms and implementation details involved
in the concretizations of a generic framework that enables exact construc-
tion, maintenance, and manipulation of arrangements embedded on certain
two-dimensional orientable parametric surfaces in three-dimensional space.
The fundamentals of the framework are described in a companion paper.
Our work covers arrangements embedded on elliptic quadrics and cyclides in-
duced by intersections with other algebraic surfaces, and a specialized case of
arrangements induced by arcs of great circles embedded on the sphere. We
also demonstrate how such arrangements can be used to accomplish various
geometric tasks efficiently, such as computing the Minkowski sums of poly-
topes, the envelope of surfaces, and Voronoi diagrams embedded on paramet-
ric surfaces. We do not assume general position. Namely, we handle degen-
erate input, and produce exact results in all cases. Our implementation is
realized using Cgal and, in particular, the package that provides the under-
lying framework. We have conducted experiments on various data sets, and
documented the practical efficiency of our approach.

Mathematics Subject Classification (2010). Primary 68U05; Secondary 14Q10.

Keywords. computational geometry, arrangement of curves, parametric sur-
face, Cgal, robust geometric computing, Voronoi diagram, lower envelope,
Gaussian map, quadric, ring Dupin cyclide.

1. Introduction

Given a finite collection C of geometric objects (such as lines, planes, or spheres)
the arrangement A(C) is the subdivision of the space where these objects reside

This work has been supported in part by the Israel Science Foundation (grant no. 236/06),
by the German-Israeli Foundation (grant no. 969/07), and by the Hermann Minkowski–Minerva
Center for Geometry at Tel Aviv University.

2 Berberich, Fogel, Halperin, Kerber and Setter

into cells as induced by the objects in C. In this paper we concentrate on classes
of arrangements embedded on two-dimensional orientable parametric surfaces. An
arrangement of these classes consists of cells of dimension 0 (vertices), 1 (edges),
and 2 (faces). We describe how such instances of arrangements can be produced,
and how instances of such classes can be robustly constructed, maintained, and
manipulated using exact computation. We divide the presented classes into two
categories distinguished by the type of arithmetic required for their implemen-
tation, as the type of arithmetic plays a significant role in exact computation.
The classes of arrangements we present in this paper are concretizations of a new
generic framework [7, 8]. Relying on such a framework in general is advantageous
for two reasons: (i) new concretizations are relatively easily produced, and (ii) all
functionality available for the framework immediately becomes available for the
new concretization. Our case is no exception. Generating a new concretization
amounts to the provision of two compact components, called geometry traits and
topology traits, that must satisfy two minimal sets of requirements, respectively.
The geometry-traits class handles the specific shape of the surface and the family
of curves that induce the embedded arrangement. The topology-traits class pro-
vides topological information related to the embedding surface. The framework
itself is independent of the type of the inducing curves and of the type of the
embedding surface. Typically, a single topology-traits class can be coupled with
several different geometry-traits classes to produce new classes of arrangements.
This framework setup and the separation between geometric and topological as-
pects of the two-dimensional subdivision enable the convenient production of new
classes of arrangements.

Cgal, the Computational Geometry Algorithms Library,1 provides a generic
and robust, yet efficient, implementation of widely used geometric data-structures
and algorithms. The library contains models of various geometric Kernel con-
cepts [27, 42]. Each model defines several types of constant-size non-modifiable
geometric primitive objects (such as points and lines) and predicates and opera-
tions on objects of these types. The library also contains many fundamental geo-
metric data-structures and algorithms, the implementation of which is based on
traits concepts, often already modelled by Cgal’s geometry kernels. The Arrange-
ment on surface 2 package [60] of Cgal implements the aforementioned frame-
work and various topology-traits and geometry-traits components. It is released as
part of Cgal version 3.4 and higher. It supports the construction and maintenance
of arrangements embedded on two-dimensional orientable parametric surfaces in
three dimensions, and is the result of extending the former Arrangement 2 pack-
age of Cgal. The implementation of the extended package maximizes code reuse
by generalizing prevalent algorithms, such as the sweep-line and zone-traversal
algorithms. The Arrangement on surface 2 package comes with many useful op-
erations on arrangements, such as point location, insertion of curves, removal of

1http://www.cgal.org

http://www.cgal.org

Arrangements on Parametric Surfaces II 3

curves, and overlay computation, which enable its application for various geometric
problems.

In this work, we report on two concretizations of the package. First, we con-
sider arrangements induced by arcs of great circles, also known as geodesic arcs,
embedded on the sphere [32, 33]. Such arrangements can be computed efficiently,
since all calculations are performed with (exact) rational arithmetic. We also dis-
cuss numerous applications for geodesic arcs, that is, Minkowsi sum computation
for three-dimensional polytopes, envelope computation, and Voronoi diagram con-
struction.

As second class of concretizations, we look at arrangements embedded on
elliptic quadrics [7] and on the Dupin cyclide [11]. This covers many “natural”
surfaces, such as spheres, ellipsoids, and cylinders (quadrics), and tori (cyclides).
In both cases, the curves on the surface are given by the intersections of the surface
and other algebraic surfaces of arbitrary degree. Providing suitable models for the
topology-traits and geometry-traits concepts is much more involved compared to
geodesics on the sphere, because the topology of the surface is more complicated
and algebraic arithmetic is necessary to deal with the curves in an exact manner.
We therefore concentrate on the details of these models, and only sketch possible
applications.

The software described in this paper rigorously adheres, as does Cgal in
general, to the generic programming paradigm [4], making extensive use of C++

class-templates and function-templates. The generic-programming paradigm uses
a formal hierarchy of abstract requirements on data types referred to as concepts,
and a set of components that conform precisely to the specified requirements, re-
ferred to as models. Concepts and models correspond to expectations for template
parameters and classes used to instantiate them, respectively. The main module
of the framework is implemented as a class-template called Arrangement on -

surface 2 parameterized by the geometry-traits and the topology-traits template
parameters. A concretization of a specific class of arrangements is realized through
the instantiation of the Arrangement on surface 2 class template with geometry
and topology-traits classes that model the corresponding concepts.

Our implementation is robust, as it is designed to handle all degeneracies,2

and exact, as all underlying geometric operations follow the exact geometric com-
putation paradigm [61].

Related Work. Arrangements in general are fundamental data-structures in com-
putational geometry, and have been intensively studied for several decades. For
related work on arrangements see Section 1 of the companion paper [8] and the
references therein. Arrangements of linear objects in the plane in particular have
many theoretical and practical applications (see, e. g., [2, 17, 31, 38]), and many of
them have analogous applications, where the embedding plane and the inducing

2The implementation of the Arrangement on surface 2 package currently lacks support for iso-
lated points and curves on the boundary of the parameter space. Thus, some special input is not
handled in software yet.

4 Berberich, Fogel, Halperin, Kerber and Setter

linear curves are substituted for the sphere and geodesic arcs on it. Arrangements
of geodesic arcs on the sphere are useful in their own right. For example, they can
be used to represent Gaussian maps of polytopes, which in turn can be used to
compute Minkowski sums of polytopes; see Section 2.2.

Arrangements on quadrics, have previously been discussed [10]. However, the
approach constructs two arrangements by considering a parallel projection of in-
tersection curves induced by other quadrics onto the xy-plane, and the connection
between the two is not implemented.

Outline. For the rest of the article we assume the reader to be familiar with the
framework introduced in the companion paper [8]; especially with its notion and
the geometry-traits and topology-traits concepts. We provide implementation de-
tails and application samples of our first non-planar concretizations: Section 2
covers geodesic arcs on the sphere and Section 3 presents arrangements on ring
Dupin cyclides and elliptic quadrics. We conclude and present future-research di-
rections in Section 4.

This paper unifies and summarizes our capabilities in concretizing of the
Arrangement on surface 2. Preliminary results along these lines have been pre-
viously published in a series of conference and proceedings papers [7, 9, 11, 32, 33].
We here present their matured versions.

2. A Concretization with Rational Arithmetic and its Application

In this section we concentrate on the specific algorithms and implementation de-
tails involved in the exact construction and maintenance of arrangements induced
by geodesic arcs embedded on the sphere (centered at the origin), and on appli-
cations of such arrangements, that is, the exact construction of Minkowski sums
of polytopes, the computation of envelopes projected onto the sphere, and the
exact construction of Voronoi diagrams on the sphere, the bisectors of which are
geodesic arcs. The class of Voronoi diagrams includes the subclass of Voronoi dia-
grams of points and its generalization, power diagrams on the sphere, also known
as Laguerre Voronoi diagrams.

There is an analogy between this class of arrangements and the class of
planar arrangements induced by linear curves (i. e., segments, rays, and lines), as
properties of linear curves in the plane often, but not always, hold for geodesic
arcs on the sphere. For example, given any two non-antipodal points on the sphere
there exists a unique great circle connecting the two points. When computing exact
arrangements of non-linear objects (e. g., elliptic arcs on the plane) we usually
have to employ number-types that can handle algebraic numbers in a certified
manner (see, e. g., [46]), which typically incurs significant running-time penalties.
The ability to robustly construct arrangements of geodesic arcs on the sphere, and
robustly apply operations on them using only (exact) rational arithmetic (as is the
case with planar arrangements induced by linear curves) is a key property that
enables an efficient implementation.

Arrangements on Parametric Surfaces II 5

2.1. Arrangements of Geodesic Arcs Embedded on the Sphere

We use the following parameterization of the unit sphere: Φ = [−π + α, π + α] ×
[−π

2 , π
2], φS(u, v) = (cosu cos v, sin u cos v, sin v), where α must be substituted with

an angle, the arctangent of which is rational, and defaults to 0 when the class is
instantiated (at compile time).3 The equator curve, for example, is given by γ(t) =
(π(2t−1)+α, 0), for t ∈ [0, 1]. This parameterization induces two contraction points
ps = (0, 0,−1) = φS(u,−π

2) and pn = (0, 0, 1) = φS(u, π
2), referred to as the south

and north poles, respectively, and an identification curve {φS(π+α, v) | − π
2 ≤ v ≤

π
2 }, as φS(−π + α, v) = φS(+π + α, v) for all v (which coincides with the opposite
Prime (Greenwich) Meridian when α = 0).

We developed the topology traits to support not only arrangements of ge-
odesic arcs, but any type of curves embedded on the sphere parameterized as
above, without compromising with the performance of the operations gathered in
the traits class. We hope that this topology traits will come in handy in the future
for constructing and maintaining arrangements induced by types other than geo-
desic arcs, such as general circular arcs, which appear in arrangements induced by
intersections of spheres embedded on the sphere [15, 18, 39]. The topology traits
initializes the eDcel to have a single bounded face, the embedding of which is
the entire sphere. It is designed to retain the variant that this face always con-
tains the point p = (umax, vmax − ε), ε > 0, where ε is sufficiently small, such
that the definition of the face does not depend on the choice of ε during modifi-
cations the arrangement may undergo; see [8, §3.2]. The topology traits maintains
a search structure of vertices that coincide with the contraction points or lie on
the identification arc; see [8, §A]. Flexible parameterization reflected in the ability
to substitute α allows the user to choose a parameterization that induces as few
as possible vertices on the boundary of the parameter space, reducing the time it
takes to, insert them into, and find them in the search structure.

The geometry-traits class for geodesic arcs on the sphere is parameterized
with a geometric kernel [42] that encapsulates the number type used to represent
coordinates of geometric objects and to carry out algebraic operations on those
objects. The implementation handles all degeneracies, and is exact as long as the
underlying number type supports the arithmetic operations +, −, ∗, and / in un-
limited precision over the rationals, such as the one provided by Gmp, the Gnu

Multi-Precision bignum library.4 No other arithmetic operations are required even
though the embedding surface is a sphere. We are able to use high-performance
kernel models instantiated with exact rational, number-types for the implementa-
tion of this geometry-traits class, as exact rational arithmetic suffices to carry out
all necessary algebraic operations.

The geometry-traits class defines the point type to be an unnormalized vector
in R3, representing the place where the ray emanating from the origin in the
relevant direction pierces the sphere. An arc of a great circle is represented by

3The actual template parameters of the class are two integers specifying the arctangent of α.
4http://gmplib.org

http://gmplib.org

6 Berberich, Fogel, Halperin, Kerber and Setter

its two endpoints, and by the plane that contains the endpoints (represented as
directions) and the origin. The orientation of the plane and the distinction between
the source and target points determine which one of the two arcs of the great circle
is considered.

The point type is extended with an enumeration type that indicates whether
the direction (i) pierces the south pole, (ii) pierces the north pole, (iii) intersects the
identification arc, or (iv) is any other direction. An arc of a great circle is extended
with three Boolean flags that indicate whether any one of the x, y, z coordinates of
the normal to the plane that defines the arc vanishes.5 Typically, points and curves
that are input of geometry-traits operations are projected onto a target plane
(one of the three major planes), before processed in a lower dimension. Naturally,
planes orthogonal to the plane that defines an input arc must be avoided as target
planes. The flags above are used to minimize the number of algebraic operations the
geometry-traits operations perform, for example, eliminating invalid target planes.
This reduction has a drastic effect on the performance of arrangement operations at
the account of a slight increase in space consumption. This representation enables
an exact, yet efficient, implementation of all geometric operations required by the
geometry-traits concept using exact rational arithmetic, as normalizing directions
and planes is completely avoided.

x

y

d̂

p̂1p̂2

We describe in detail four predicates: Compare u,
Compare uv, Compare u near boundary, and Com-
pare v near boundary; see [8, §4.2] for the complete set of
the concept requirements. The first among the four com-
pares two points p1 and p2 by their u-coordinates. The
concept admits the assumption that the input points do
not coincide with the contraction points and do not lie on
the identification arc. Recall that points are in fact un-
normalized vectors in R3. We project p1 and p2 onto the
xy-plane to obtain two-dimensional unnormalized vectors
p̂1 and p̂2, respectively. We compute the intersection be-
tween the identification arc and the xy-plane to obtain

a third two-dimensional unnormalized vector d̂. Finally,

we test whether d̂ is reached strictly before p̂2 is reached,
while rotating counterclockwise starting at p̂1. This geo-
metric operation is supported by every geometric kernel

of Cgal. In the figure to the right d̂ is reached strictly
before p̂2 is reached. Therefore, the u-coordinate of p1 is
larger than the u-coordinate of p2.

The predicate Compare uv compares two points p1 and p2 lexicographically.
It first applies Compare u to compare the u-coordinates of the two points. If the u-
coordinates are equal, it applies a predicate that compares the v-coordinates of two
points with identical u-coordinates, referred to as Compare v. This predicate first

5We encode the three Boolean flags as three bits in order to save space.

Arrangements on Parametric Surfaces II 7

compares the sign of the z-coordinates of the two unnormalized input vectors.
If they are identical, it compares the squares of their normalized z-coordinates,
essentially avoiding the square-root operation.

The predicates above accept points, the pre-images
of which, lie in the interior of the parameter space. How-
ever, there is also a need to lexicographically compare the
ends of arcs, the pre-images of which reach the bound-
ary of the parameter space. The predicate Compare u

near boundary accepts either (i) a point, the pre-image
of which lies in the interior of the parameter space, and
a curve-end, or (ii) two curve-ends. Such a curve-end is
provided by an arc and an index that identifies one of the
two ends of the arc, and must coincide with one of the contraction points. The first
variant compares the u-coordinate of the input point and a point along the input
arc near its given end, whereas the second variant compares the u-coordinates of
two points along the input arcs near their respective given ends. Recall, that the
u-coordinates of all points along a vertical arc are the same (C4 and C5 in the
figure above). Thus, we can compare the u-coordinates of two respective arbitrary
points on the two vertical arcs that lie inside the parameter space. Evidently, we
compare the two vectors perpendicular to the normals to the planes that define
the vertical arcs, respectively. For example, the u-coordinate of a point on the arc
C4 near its top end is smaller than the u-coordinate of a point on the arc C5 near
its top end, and in particular it is smaller than the u-coordinate of the bottom
end of C5. The Compare v near boundary predicate compares the v-coordinate of
two arcs ends, the pre-images of which lie on the same (left or right) side of the
boundary of the parameter space. We use the aforementioned Compare v predi-
cate to compare the end points. If the points are equal, we compare the normals
to the plane that define the arcs. In our example, the left end of C1 is smaller than
the left end of C2, which is smaller than the left end of C3.

All the required geometric operations listed in the geometry-traits concept
are implemented using only rational arithmetic. Degeneracies, such as overlapping
arcs that occur during intersection computations, are properly handled. The end
result is a robust, yet efficient, implementation. Armed with the geometry-traits
for geodesic arcs on the sphere, we can use all the arrangement machinery to solve
a variety of problems involving such arrangements.

2.2. Minkowski Sum of Polytopes

An immediate motivation for constructing arrangements of arcs of great circles em-
bedded on a sphere, is computing the Gaussian map of polytopes (bounded convex
polyhedra). This representation enables, for example, the efficient computation of
Minkowski sums of polytopes by overlaying their Gaussian maps, which in turn,
for example, enables the quick detection of collision; see [29] and the references
therein.

8 Berberich, Fogel, Halperin, Kerber and Setter

The Gaussian map G =
G(P) of a compact polytope P
in Euclidean three-dimensional
space R3 is a set-valued map-
ping from P to the unit sphere
S2, which assigns to each point
p on the boundary of P the
set of outward unit normals to
supporting planes to P at p.
Thus, the whole of a facet f
of P is mapped under G to a
single point, representing the
outward unit normal to f . An
edge e of P is mapped to a
(geodesic) segment G(e) on S2,
whose length is easily seen to
be the exterior dihedral angle
at e. A vertex v of P is mapped
by G to a spherical polygon G(v), whose sides are the image under G of edges in-
cident to v, and whose angles are the angles supplementary to the planar angles
of the facets incident to v; that is, G(e1) and G(e2) meet at angle π −α whenever
e1 and e2 meet at angle α [44]. The above implies that G(P) is an arrangement
embedded on the unit sphere. Extending the mapping above, by marking each
face f = G(v) of the arrangement with its dual vertex v, enables a unique inverse
Gaussian mapping, denoted by G−1, which maps an extended arrangement em-
bedded on the unit sphere back to a polytope boundary. The figure above shows
(from left to right and then from top to bottom): a tetrahedron, the Gaussian map
of the tetrahedron, a cube, and the Gaussian map of the cube.

We use an arrangement of arcs of great circles embedded on the sphere to
maintain the Gaussian map G = G(P) of a compact polytope P in R3.

2.2.1. Gaussian Map Construction. An input model of a polytope is typically pro-
vided as a polyhedral mesh. Constructing the Gaussian map of a model given in
this representation is done indirectly. First, the Cgal Polyhedron 3 [49] data-
structure that represents the model is constructed. Then, the Gaussian map is
constructed exploiting the accessible incidence relations between the polytope fea-
tures stored in the Polyhedron 3 data-structure. Once the construction of the
Gaussian map is complete, the Polyhedron 3 intermediate representation is dis-
carded.

The Polyhedron 3 data-structure, like the arrangement Dcel, consists of
extendible vertices, halfedges, and facets and incidence relations on them. We tra-
verse the Polyhedron 3 features in a DFS fashion starting at an arbitrary vertex.
For each vertex being processed, we visit its incident undiscovered edges and pro-
cess them, and for each edge being processed, we visit its undiscovered vertex and

Arrangements on Parametric Surfaces II 9

process it. When we process a polytope edge e we insert the arc that is the embed-
ding of the dual edge G(e) into the arrangement that represents the Gaussian map.
Notice, that all arcs in the Gaussian map of a non-degenerate polytope are strictly
less than π, each face of the arrangement is convex, and, naturally, all inserted
edges are pairwise disjoint in their interior. These properties allow us to use one
of the efficient insertion member-functions supported by the Arrangement on -

surface 2 data-structure; see, e. g., [28]. These functions accept hints regarding
the location and the incidence relations of the inserted arc, and return the newly
created feature, which we store in the Polyhedron 3. We use this information in
consequent insertions of arcs into the Gaussian map as hints. If the new arc to be
inserted intersects the identification arc, it is first split at the intersection point
into two u-monotone arcs, which are inserted instead. The first arc is inserted
into an empty arrangement. For every other arc that is the embedding of a new
edge, either one or both of the two incident vertices of the edge exist already when
the arc is inserted. These vertices are passed as hints to the insertion function,
resulting in an efficient overall process.

(a) Tetrahedron (b) Octahedron (c) Icosahedron (d) Dioctagonal Pyramid

(e) Pentagonal Hexe-
contahedron

(f) Truncated Icosido-
decahedron

(g) Geodesic Sphere
level 4

(h) Ellipsoid like polyhe-
dron

Figure 1: Gaussian maps of various polytopes.

We have created a database of various models of polytopes. Figure 1 depicts,
for a small subset of our polytope collection, the Gaussian map of each polytope.
Table 1 lists the number of features in the arrangement of geodesic arcs embedded
on the sphere that represents the Gaussian map of each polytope. Recall that

10 Berberich, Fogel, Halperin, Kerber and Setter

the number of faces (F) of the Gaussian map is always equal to the number of
vertices of the polytope. However, the number of halfedges (HE) and vertices (V)
of the Gaussian map is either equal to twice the number of edges and the number
of facets in the primal representation, respectively, or greater than the respective
figures due to intersections between Gaussian-map edges and the identification arc.
The table also lists the time in seconds (t) it takes to construct the arrangement
once the intermediate polyhedron is in place, on a Pentium PC clocked at 1.7 GHz.
In addition, the table provides information regarding an alternative representation
of polytopes called Cubical Gaussian Map (CGM) [30] we have implemented in the
past. The CGM employes six planar arrangements embedded on the six facets of
the unit cube, respectively, stitched at the cube edges and vertices. Notice, that the
number of features in the CGM representation is higher than in the corresponding
Gaussian maps due to the excessive splitting caused by the stitching.

2.2.2. Minkowski-sum Construc-
tion. The overlay of two spherical
subdivisions S1 and S2 is a subdi-
vision S, such that there is a face
f in S if and only if there are faces
f1 and f2 in S1 and S2, respec-
tively, such that f is a maximal
connected subset of f1 ∩ f2; this
is a straightforward generalization
of the planar case [17, Section 2.3].
The overlay of the Gaussian maps of two polytopes P and Q identifies all the pairs
of features of P and Q respectively that have parallel supporting planes, as they

Table 1: Complexities of the primal and dual representations. SGM — Spherical Gaussian
Map, CGM — Cubical Gaussian Map, Tetra. — Tetrahedron, Octa. — Octahedron, Icosa.
— Icosahedron, DP — Dioctagonal Pyramid, PH — Pentagonal Hexecontahedron, TI —
Truncated Icosidodecahedron, GS4 — Geodesic Sphere level 4, El16 — Ellipsoid-like polytope
made of 16 latitudes and 32 longitudes, t - time consumption in seconds.

Object Polytope SGM CGM
type V E F V HE F t V HE F t
Tetra. 4 6 4 4 12 4 0.01 42 102 21 0.01
Octa. 6 12 8 10 28 6 0.01 24 48 12 0.01
Icosa. 12 30 20 21 62 12 0.01 72 192 36 0.01
DP 17 32 17 25 80 17 0.01 97 280 55 0.01
PH 60 150 92 101 318 60 0.03 200 600 112 0.02
TI 120 180 62 77 390 120 0.05 230 840 202 0.03
GS4 252 750 500 506 1512 252 0.08 708 2124 366 0.07
El16 482 992 512 528 2016 482 0.11 776 2752 612 0.06

Arrangements on Parametric Surfaces II 11

occupy the same space on the unit sphere, thus, identifying all the pairwise fea-
tures that contribute to the boundary of the Minkowski sum of P and Q. A facet
of the Minkowski sum is either a facet f of Q translated by a vertex of P supported
by a plane parallel to f , or vice versa, or a facet parallel to two parallel planes
supporting an edge of P and an edge of Q, respectively. A vertex of the Minkowski
sum is the sum of two vertices of P and Q, respectively, supported by parallel
planes. The figure above shows the Minkowski sum of a tetrahedron and a cube
(the left part of the figure) and the Gaussian map of the Minkowski sum.

(a) Tetra. ⊕ Cube (b) DP ⊕ ODP (c) PH ⊕ TI (d) El16 ⊕ OEl16

Figure 2: Gaussian maps of Minkowski sums. Refer to Tables 1 and 2 for the abbreviations.

When the overlay operation progresses, new vertices, edges, and faces of the
resulting arrangement are created based on features of the two operands. When
a new feature is created its attributes are updated. For example, a new face f is
induced by the overlap of two faces f1 and f2 of the Gaussian maps of the two
summands, respectively. In that case, the primal vertex associated with f is set to
be the sum of the primal vertices associated with f1 and f2, respectively.

Table 2: Complexities of primal and dual Minkowski-sum representations. ODP — Dioctagonal
Pyramid orthogonal to DP, RGS4 — Rotated Geodesic Sphere level 4, OEl16 — Ellipsoid-like
polytope made of 16 latitudes and 32 longitudes orthogonal to El16. Refer to Table 1 for the
remaining abbreviations.

Smd 1 Smd 2
Minkowski Sum

Primal SGM CGM
V E F V HE F V HE F

Icosa. Icosa. 12 30 20 21 62 12 72 192 36
DP ODP 131 261 132 141 540 131 242 832 186
PH TI 248 586 340 429 1712 429 514 1670 333
GS4 RGS4 1048 2582 1536 1564 5220 1048 1906 6288 1250
El16 OEl16 2260 4580 2322 2354 9224 2260 2826 10648 2510

12 Berberich, Fogel, Halperin, Kerber and Setter

Smd 1 Smd 2 SGM CGM NGM Fuk CH
Icosa. Icosa. 0.01 0.01 0.12 0.01 0.01
DP ODP 0.04 0.02 0.33 0.35 0.05
PH TI 0.13 0.03 0.84 1.55 0.20
GS4 RGS4 0.71 0.12 6.81 5.80 1.89
El16 OEl16 1.01 0.14 7.06 13.04 6.91

Table 2 lists the num-
ber of features (V, HE,
F) in the arrangement
that represents the Gauss-
ian map of the respective
Minkowski sums. The table
to the right shows the time
in seconds (t) it takes to construct the arrangement once the Gaussian maps of the
summands are in place (SGM). It also shows the time it takes to compute exact
Minkowski sums using a second method based on the CGM representation (CGM),
a third method implemented by Hachenberger based on Nef polyhedra embedded
on the sphere [37] (NGM), a fourth method implemented by Weibel6based on
an output-sensitive algorithm designed by Fukuda [35] (Fuk), and a non output-
sensitive method that computes the convex hull of the pairwise sum of the vertices
of the two summands (CH).7 Note that Fukuda’s algorithm is more general, as it
can be used to compute the Minkowski sum of polytopes in an arbitrary dimen-
sion d, and as far as we know, it has not been optimized specifically for d = 3.
While our (spherical) Gaussian map method exhibits better performance than the
NGM, Fok, and CH methods, it is still inferior to the CGM method. As the imple-
mentation of the framework, the traits classes, and the application is rather new
and haven’t been fully optimized yet, we believe that once all optimizations are in
place the gap between the time consumption of these two methods will decrease
or even revert. Figure 2 depicts Gaussian maps of some of the resulting Minkowski
sums listed in the tables above.

2.3. Voronoi Diagrams on the Sphere

Voronoi diagrams were thoroughly investigated and were used to solve many geo-
metric problems [3, 55]. The Voronoi diagram of a set of objects, referred to as
Voronoi sites, is the decomposition of the embedding space into maximal relatively-
open connected cells, where each cell consists of points that are closer to one par-
ticular site (or a set of sites) than to any other site. Voronoi diagrams are strongly
connected to arrangements [20] — a property that yields a very general approach
for computing Voronoi diagrams.

This concept of space decomposition was extended to various kinds of geo-
metric Voronoi sites, ambient spaces, and distance functions, such as power dia-
grams of circles in the plane, multiplicatively weighted Voronoi diagrams, addi-
tively weighted Voronoi diagrams, and more (e. g., [3, 13, 25, 26, 55]). An imme-
diate extension is the creation of various Voronoi diagrams, embedded on two-
dimensional orientable parametric surfaces in general [50, 56], and on the sphere
in particular [53, 54, 58].

6http://roso.epfl.ch/cw/poly/public.php
7The convex hull is computed using the CGAL::convex hull 3 function, which implements the
quickhull algorithm [43].

http://roso.epfl.ch/cw/poly/public.php

Arrangements on Parametric Surfaces II 13

In this section we describe another application of arrangements of arcs of
great circles embedded on a sphere. The new ability to construct this class of
arrangements provides the means to efficiently construct envelopes of functions
defined over the sphere, thus enabling the construction of Voronoi diagrams, the
bisectors of which are composed of geodesic arcs. We show how we use a general
framework for constructing Voronoi diagrams to construct two types of Voronoi
diagrams on the sphere.

The technique to compute Voronoi diagrams on two-dimensional orientable
parametric surfaces in an exact manner described in this section can be applied
to other surfaces as well, conditioned on the ability to handle bisectors of sites
embedded on these surfaces.

2.3.1. Envelopes on Surfaces. We define lower envelopes of functions on the sphere
in a way similar to the standard definition of lower envelopes of bivariate functions
in the three-space [38]:

Definition 2.1 (Lower Envelope over the Sphere). Given a set of bivariate functions
(possibly partially defined) F = {f1, . . . , fn}, where fi : S2 → R, their lower

envelope Ψ(u, v) is defined to be their pointwise minimum:

Ψ(u, v) = min
1≤i≤n

fi(u, v).

The minimization diagram MF of the set F is the subdivision of S2 into
maximal relatively-open connected cells, such that the function (or the set of
functions) that attains the lower envelope over all points of a specific cell of the
subdivision is the same. Alternatively, the minimization diagram can be seen as
the two-dimensional central projection of the lower envelope onto S2. The upper

envelope and the maximization diagram are defined similarly.
Agarwal et al. [1] presented a simple and efficient divide-and-conquer algo-

rithm for the construction of lower and upper envelopes of bivariate functions
defined over R2. Assuming that all functions are “well-behaved,” they showed
that the theoretical worst-case time complexity of the algorithm is8 O(n2+ε), for
any ε > 0. Randomization admits an expected running time of O(F (n) log n), for

envelopes of complexity F (n) = Ω(n1+ε), for some ε > 0, and of O(n log2 n) for
envelopes of complexity O(n) [57].

The algorithm partitions F into two disjoint subsets F1 and F2 of roughly
equal size, and recursively constructs their respective minimization diagrams MF1

and MF2
. Each feature – vertex, edge, or face – of MF1

and MF2
is labeled with

the set of functions that attain the lower envelope over it. The merging of MF1

and MF2
into the final minimization diagram MF starts with overlaying the two

minimization diagrams to obtain a new refined arrangement whose features are
labeled with the functions attaining the lower envelopes over both diagrams.

8A bound of the form O(f(n) · nε) means that the actual upper bound is Cεf(n) · nε, for any
ε > 0, where Cε is a constant that depends on ε, and generally tends to infinity as ε goes to 0.

14 Berberich, Fogel, Halperin, Kerber and Setter

Next, the minimization diagram over each feature is constructed, splitting
some of the cells (edges or faces). The splitting of features is a non-trivial task
and requires a careful handling. Finally, redundant features are removed, and faces
labeled with identical sets of functions are stitched together, to yield the combined
final minimization diagram.

Meyerovitch presented an implementation of this algorithm in the form of
a Cgal package, named Envelope 3 [51, 52]. The implementation computes the
lower (or the upper) envelope of a set of general surfaces in three dimensions, and
deals with all inputs, including all degenerate situations. The efficient implemen-
tation is the by-product of minimizing the number of exact (and slow) arithmetic
operations through a clever propagation of pre-computed geometric and topo-
logical information. The resulting minimization diagram is represented with an
arrangement data-structure. The implementation mainly makes use of two opera-
tions supported by the Arrangement 2 package: (i) sweep-based overlay operation,
which is used to overlay two minimization diagrams, and (ii) zone computation-
based insertion operation, which is used to insert bisector curves that partition
cells of the refined arrangement.

The new Arrangement on surface 2 package extends the aforementioned
operations, that is, the sweep-line and zone-computation, to support two-dimensional
parametric surfaces. Thus, we utilize the Envelope 3 code to handle minimization
diagrams that are embedded on two-dimensional parametric surfaces with little
effort.

While computing lower envelopes of functions defined over two-dimensional
orientable parametric surfaces has its own significance, we concentrate, in Sec-
tion 2.3.2 below, on describing how this ability is exploited to compute Voronoi
diagrams on the sphere.

2.3.2. Exact Construction of Voronoi Diagrams on the Sphere. Let O = {o1, . . . , on}
be a set of n objects in S2 (also referred to as Voronoi sites), and let ρ : O×S2 → R

be a distance function between Voronoi sites and points on the sphere.

Definition 2.2 (Voronoi Diagram on the Sphere). The Voronoi diagram of O over
S2 with respect to ρ is defined to be the partition of S2 into maximal relatively-
open connected cells, where each cell consists of points that are closer to one
particular site (or a set of sites) than to any other site. Formally, every point p ∈ S2

lies in a cell corresponding to a set of sites P ⊆ O if, and only if, ρ(p, pi) < ρ(p, pj)
for every pi ∈ P, pj /∈ P , and ρ(p, pi) = ρ(p, pj) for every pi, pj ∈ P .

The bisector of two sites is the locus of points that have an equal distance to
both sites.

Definition 2.3 (Geodesic Distance). Given two points p, q ∈ S2, the geodesic dis-

tance between them ρ(p, q) is defined to be the shortest distance measured along
a path on the surface of the sphere. The geodesic distance ρ(p, q) is equal to the
length of a geodesic arc that connects p and q.

Arrangements on Parametric Surfaces II 15

We define the Voronoi diagram for a set of points on the sphere (or spherical

Voronoi diagram) to be the Voronoi diagram of the set as induced by the geodesic
distance function. The bisector of two point sites on the sphere is a great circle,
which is the intersection of the sphere and the bisector plane of the points in R3,
as imposed by the Euclidean metric [54, 55].

Another type of Voronoi diagrams whose bisectors are great circles is the
power diagram of circles on the sphere [58], which generalizes the Voronoi diagram
of points; see Figures 3c and 3d. Power diagrams on the sphere have several appli-
cations similar to the applications of power diagrams in the plane. For example,
determining whether a point is included in the union of circles on the sphere, and
finding the boundary of the union of circles on the sphere [45, 58].

Given two circles on the sphere c1 and c2, let π1 and π2 be the planes con-
taining c1 and c2, respectively. The bisector of c1 and c2 is the intersection of the
sphere and the plane that contains the intersection line of π1 and π2 and the origin.
If π1 and π2 are parallel planes, then the bisector is the intersection of the sphere
and the plane that contains the origin and is parallel to both π1 and π2.

(a) (b) (c) (d)

Figure 3: Voronoi diagrams on the sphere. Sites are drawn in red and Voronoi edges are
drawn in blue. (a) The Voronoi diagram of 32 random points. (b) A highly degenerate case
of Voronoi diagram of 30 point sites on the sphere. (c) The power diagram of 10 random
circles. (d) A degenerate power diagram of 14 sites on the sphere.

Edelsbrunner and Seidel observed the connection between Voronoi diagrams
in Rd and lower envelopes of the corresponding distance functions to the sites in
Rd+1 [20]. This observation also holds for the spherical case. For example, given
a set P = {p1, . . . , pn} of points on the sphere if we take fi(x) = ρ(x, pi), for
1 ≤ i ≤ n, then the minimization diagram of {f1, . . . , fn} over S2 corresponds to
the Voronoi diagram of P over S2.

A new framework was developed to compute different types of Voronoi dia-
grams based on the envelope algorithm of Cgal [57]. The implementation is exact
and handles all kinds of degenerate input. The framework provides a reduced and
convenient interface between the construction of Voronoi diagrams and the con-
struction of envelopes.

Obtaining a new type of Voronoi diagrams requires the provision of a traits
class. This traits class models the EnvelopeVoronoiTraits 2 concept that refines one

16 Berberich, Fogel, Halperin, Kerber and Setter

of the traits concepts for the geometry-traits classes, which handles bisector curves
of the new diagram type. Essentially, every type of Voronoi diagram, the bisectors
of which can be handled by an arrangement traits class, can be computed using this
framework, provided that the user supplies a small additional set of procedures,
e. g., a procedure for comparing distances to two sites from a given point; see [57].

v
0

pi/2

−pi

u

0

pi

The newly created traits class (described
in Section 2.1) enables the computation of
Voronoi diagrams on the sphere, the bisectors
of which are great circles (or piecewise curves

composed of geodesic arcs, though currently
there are no such instances implemented). As
mentioned above, the bisectors of Voronoi di-
agrams of points and power diagrams on the
sphere are great circles; see Figure 3. We im-
plicitly construct envelopes of distance func-
tions defined over the sphere to compute
Voronoi diagrams. The image to the right illustrates the distance function from
(0, 0) ∈ [−π, π] × [−π

2 , π
2] in the parameter space. Projecting the intersection of

two such functions onto the unit sphere using a central projection results in a great
circle. Notice, however, that we use only rational arithmetic, and so, only Voronoi
diagrams of rational points on the sphere and power diagrams of circles contained
in rational planes are supported.

Voronoi dia-
grams are repre-
sented as arrange-
ments, and can be
passed as input to
consecutive oper-
ations supported
by the Arrange-

ment on surface 2 package and its derivatives. The left-most figure shows an
arrangement on the sphere induced by (i) the continents and some of the islands
on earth, and (ii) 20 major cities in the world, which appear as isolated vertices.
The arrangement consists of 1065 vertices, 1081 edges, and 117 faces. The data
was taken from gnuplot9 and google maps.10 The middle sphere embeds an ar-
rangement that represents the Voronoi diagram of the 20 cities above. The right
figure shows the overlay of the two aforementioned arrangements (computed with
the generic overlay function from the Arrangement on surface 2 package).

9http://www.gnuplot.info
10http://maps.google.com

http://www.gnuplot.info
http://maps.google.com

Arrangements on Parametric Surfaces II 17

3. Concretizations with Algebraic Arithmetic

Beyond geodesic arcs on a sphere, we also demonstrate concretizations for more
complicated surfaces. For that purpose, we look at the following scenario: given
some reference surface S, and a set {S1, . . . , Sn} of other surfaces not overlaping
with S, the intersection curves S ∩ Si induce an arrangement on S. Our goal is to
compute such arrangements for certain choices of an algebraic reference surface S,
and for arbitrary algebraic surfaces Si as in the following definition.

Definition 3.1 (Algebraic surface). Let g ∈ Q[x, y, z]. The real algebraic surface

induced by g is the point set VR(g) := {(x, y, z) ∈ R3 | g(x, y, z) = 0}.
We assume that the input surfaces S1, . . . , Sn are given by their defining

equations g1, . . . , gn. We report on two different approaches for two respective
types of reference surfaces.

In our first example we consider a ring Dupin cyclide, which generalizes a
torus, as the reference surface. We directly exploit a rational parameterization φS

of the cyclide, that is, the surface is attained by the image of the unbounded plane
R2 under φS . This allows to represent the intersection curves of the cyclide with
algebraic surfaces in the two-dimensional parameter space, namely as arrangement
of unbounded algebraic curves. We show how to enhance a proper geometry-traits
class, having four open sides, for this use case. The underlying planar model utilizes
the interplay of the two (yet) prototypical Cgal packages Algebraic kernel d

and Curved kernel via analysis 2, which fundamentally rely on the provided
analyses of singles and pairs of algebraic plane curves.11 The analyses’ efficiency
is guaranteed by a clever combination of approximative though certified methods
(like real root isolation with the bitstream Descartes method [23]) with unavoid-
able symbolic computations; see [21], [22], and [48] for in-depth presentation of
the task. Beyond the geometry traits, we also describe details that our model
of the ArrTopologyTraits 2 concept for a cyclide respects in order to support the
specialties of this reference surface of genus one.

We then turn to elliptic quadrics, that means ellipsoids, elliptic paraboloids,
and elliptic cylinders (the sphere is thus also included as a special case). While
rational parameterizations for those reference surface also exist, we abstain from
exploiting such. Instead, we follow a different approach, which is nicely supported
by the Arrangement on surface 2 package as well: We construct a parameteri-
zation that is more suitable for a projection approach. Its parameter space can
be decomposed into two parts: the image of one is exactly representing the lower
subsurface of the quadric, the image of the other constitute the upper subsur-
face. Then, we project all intersection curves embedded in a subsurface into the
xy-plane. Again, we enhance the geometry traits for unbounded algebraic plane
curves by level numbers to support the special geometry of this parameterization.
The topology-traits classes required for ellipic quadrics as reference surfaces are
simpler than the one for cyclides, but all share common ideas.

11We also remark the possibility to replace these layers by filtered variants [47].

18 Berberich, Fogel, Halperin, Kerber and Setter

For both kinds of reference surfaces we show how to utilize the exact and
efficient planar kernel, highlight details of the implementations, and report experi-
mental results. We refrain from an extensive discussion of conceivable applications
in order to concentrate the more elaborate traits classes for these surfaces. We
previously presented our work in [7, §4 and §5], and [11]; a detailed discussion is
given in [6, §4].

3.1. On a (ring) Dupin cyclide

Our first reference surface considered is a parameterized ring Dupin cyclide S.
Dupin cyclides have been introduced by Dupin as surfaces whose lines of curvature
are all circular [19]; a quite intuitive construction of a (Dupin) cyclide is due to
Maxwell (cited from Boehm [12]):

Let a sufficiently long string be fastened at one end to one focus of an
ellipse, let the string be kept always tight while sliding smoothly over the
ellipse, then the other end sweeps out the whole surface of a cyclide S.

Observe that a torus is yielded if the ellipse is actually a regular circle. For
simplicity of presentation, we assume that a cyclide is in standard position and

orientation, that is, the chosen base ellipse is defined by (x/a)2 + (y/b)2 = 1, a ≥
b > 0.

(a) a = 2, b = 2, µ = 1 (b) a = 13, b = 12, µ = 11. Pole, outer
circle, and tube circle are drawn.

Figure 4: Two examples of ring Dupin cyclides. All cyclide pictures are produced with
xsurface that is based on Cgal’s planar curve renderer [24].

The cyclide is defined uniquely by a, b, and a parameter µ that is the length
of the string minus a. We define c =

√
a2 − b2, which represents the distance

between the focus and the center of the ellipse. We concentrate on ring cyclides

where c < µ < a.12 Such a surface looks like a squashed torus and is free of pinch
points; see Figure 4 for two examples. We refer the reader to [16] for a complete
classification of Dupin cyclides.

12Non-ring cyclides might contain self-intersections, which are not (yet) handled by Cgal’
Arrangement on surface 2 framework.

Arrangements on Parametric Surfaces II 19

Crucial for our approach is the fact that ring Dupin cyclides possess a ratio-
nal parameterization. We start with the following (trigonometric) parameteriza-
tion [34]:

(

α
β

)

7→







µ(c−a cos α cos β)+b2 cos α

a−c cos α cos β
b(a−µ cos β) sin α

a−c cos α cos β
b(c cos α−µ) sin β

a−c cos α cos β







with α, β ∈ [−π, π].
If α = π or (α = −π) is fixed, the parameterization above yields the tube

circle (x + a)2 + z2 = (µ + c)2. If β = π (or β = −π) is fixed, it yields the outer

circle (x + c)2 + y2 = (a + µ)2. The intersection p := (−µ− c− a, 0, 0) of tube and
outer circle is called the pole of the cyclide.

To arrive at a rational parameterization, we use the following identities:

cos θ =
1 − tan2 θ

2

1 + tan2 θ
2

sin θ =
2 tan θ

2

1 + tan2 θ
2

By setting u := tan α
2 and v := tan β

2 , we get rid of the trigonometric func-
tions. We write the resulting parameterization in homogenous coordinates, that
is, the common (non-zero) denominator is treated as a separate fourth variable.

P̊ : R2 → R4,

(

u
v

)

7→









µ(c(1 + u2)(1 + v2) − a(1 − v2)(1 − u2)) + b2(1 − u2)(1 + v2)
2u(a(1 + v2) − µ(1 − v2))b
2v(c(1 − u2) − µ(1 + u2))b

a(1 + u2)(1 + v2) − c(1 − u2)(1 − v2)









Observe, that the image of P̊ is the cyclide without the tube circle and the
outer circle. As a geometric intuition, we can think of cutting the cyclide along the
outer circle and tube circle and “roll out” the surface to cover the plane. Thus, we
also refer to the outer circle and the tube circle of a cyclide as its cut circles.

Rational parameterizations of the cut circles are obtained by setting α = π
or β = π, respectively, and applying the same identities as above to get rid of
trigonometric functions. By interpreting the tube circle parameterization as the
closure of P̊ for x = ±∞, and the parameterization of the outer circle for y =
±∞, one obtains a (continuous) parameterization of the whole cyclide as a map
P : (R)2 → R3. Clearly, while P is bijective in its interior, points on the cut circles
have two pre-images (and even four for the pole), because of the identification of
opposite sides.

Our approach. We aim for a direct representation of the intersection curves in the
parameter space of the cyclide. The idea behind this is fairly simple: consider a sur-
face Si of arbitrary degree with implicit (homogeneous) equation gi = 0, then the
intersection of Si and S is given by the equation

20 Berberich, Fogel, Halperin, Kerber and Setter

gi(P̊ (u, v)) = 0. Doing this for all input sur-
faces, induced by g1, . . . , gm, yields an arrange-
ment of m algebraic curves in the parameter
space of S; this can be computed utilizing the
planar geometry traits provided by the packages
Algebraic kernel d and Curved kernel via -

analysis 2, which we have mentioned at the be-
ginning of this section. An example of such an
arrangement is depicted to the right. It is in-
duced by 5 intersecting surfaces of degree 3 on a torus and consists of 208 vertices,
314 edges, and 107 edges.

For our purposes, we “only” have to interpret the result as an arrangement
on the cyclide during its construction, that means, we have to use a non-trivial
topology-traits class that realizes identifications of opposite sides, and to enhance
the planar geometry with respect to the identifications. For brevity, we do not go
into much more details, but some points of our implementation should be discussed.
We start with the geometry traits:

• If the degree of each gi is bounded by n, the intersection curves have bi-
degree up to (2n, 2n), and total degree up to 4n. Although this does not pose
a principal problem, the computation becomes practically infeasible for too
high degrees. Our approach is practicable for surfaces of moderate degree.

• We have to deal with identifications on both pais of opposite sides of the
boundary, that is, we have to provide comparisons of curve-ends near the
boundaries, to check whether a point or curve lies on an identification, and
to compare points on identified sides; see [8] for more details. Observe that
the Curved kernel via analysis 2 is a model that deals with four open
(unbounded in parameter space) sides and that the comparisons near the
boundaries still perfectly fit.

• There exists certain components that live exclusively on the cut circles, and
are thus are not observeable when only considering the interior of the param-
eter space: isolated points at infinity (happens when a surface touches the
cyclide at a cut circle), or lines at infinity (happens when a surface completely
contains a cut circle). Both cases, however, can be detected quite easily by
plugging in the rational parameterizations of both cut circles into gi. The
degree of the resulting (univariate) polynomial determines the presence of a
line on the boundary, and its real roots give all intersections of Si and S and
the cut circles. This allows to determine whether a point or a (sub)curve on
an identification curve exists.

On the topology-traits class we want to make the following remarks. We
concentrate on the realization and the outcome of topological tasks. Further details
can be found in [8, §3 and §5].

• The initial face is bounded and covers the whole cyclide.

Arrangements on Parametric Surfaces II 21

• For each identification, that is, for each cut circle, we maintain a sorted list
of eDcel-vertices. Their order is determined by the comparisons of points
along the cut circles, as provided by the geometry-traits class for cyclides.
To locate the correct position of such a special curve-end in the circular
list of incident curves around a vertex on a cut-circle, we make use of the
Arrangement on surface 2’s internal functor Is between cw 2 that returns
true if a curve is between two curves meeting at the same point while rotating
counterclockwise.

• The design of our topology-traits class ensures that the root of the face-
component graph is either a single face (torus-like) or that there are non-
contractible components at the top level. We remark one specialty on our
surface of genus one. Our topology-traits class minds the case that the first
non-contractible closed curve does not result in a face split, but only convert
the torus-like initial face into an cylinder-like face. For more details on this
issue we refer the reader to [8].

• We remark, that curves intersecting or touching the pole of the cyclide require
special handling, for instance, applying symbolic pertubations. That is, for
consistency reasons we symbolically let the intersection take place on exactly
one identification.

The arrangement on a cyclide shown on
the right side is computed using our traits
classes. It is induced by 5 algebraic surfaces
of degree 3 intersecting the reference surface.
It consists of 240 vertices, 314 edges, and 74
faces. Experimental results are presented in
Section 3.3 below.

3.2. Arrangements of Intersection Curves on a Quadric

We come to our second type of reference surfaces, an x-elliptic quadric, which is an
algebraic surface defined by q ∈ Q[x, y, z] having total degree 2. Its intersections
with any plane x = x0 constitutes an ellipse (or a single point, or the empty set).
The set of x-elliptic quadrics comprises all ellipsoids, elliptic cylinders that are
unbounded in the x-direction, and paraboloids that are either unbounded towards
x = −∞ or x = +∞. Figure 5 illustrates examples of such surfaces. These quadrics
have nice properties: first, they are composed of a single connected component and
second, they allow a “level”-parameterization, which is explained below.

An xy-functional surface is given as the graph of a bivariate function z =
f(x, y), which is not true for an x-elliptic quadric S. But S can be subdivided into
two xy-functional surfaces by cutting along the silhouette curve silhouette(S) :=

VR(q)∩VR(∂q
∂z

). It induces the lower and upper part of S. For example, the equator
of a sphere splits it into the southern and into the northern hemisphere. Both
hemispheres are xy-functional. The projected silhouette of S onto the xy-plane is

22 Berberich, Fogel, Halperin, Kerber and Setter

(a) ellipsoid (b) elliptic paraboloid (c) elliptic cylinder

Figure 5: Elliptic quadrics

algebraically defined by the resultant polynomial13 resz(q,
∂q
∂z

). It has degree 2 for
quadrics.

Consider next the spatial intersection curve of S with another surface VR(gi),
that is, VR(q) ∩ VR(gi). The projection of this set onto the xy-plane is contained
in a real algebraic plane curve of total degree 2 ·degtotal(gi), defined by resz(q, gi).
The projected curve can be split at its critical points and intersection points with
the projected silhouette of S, resulting in (weakly) x-monotone curves and isolated
points. Each such object can be assigned to the lower or upper part of S (and in
some cases to both parts). That is, we compute the decomposition of the space
curve respecting the silhouette of S; see [10] for “lifting” the projected intersec-
tion curve induced by an arbitrary quadric, for the intersection with an algebraic
surfaces of arbitrary degree we refer the reader to [6, §5.5.3]. This assignment
enables to compute two individual planar arrangements that correspond to the
subdivisions on the two parts of S. The merging of both parts has not been done
so far.

Our approach. Our technique to stitch the two parts is to parameterize the x-
elliptic reference quadric S over a rectangular domain Φ = U × [0, 2π], with U ⊆ R

with the continiuous function φS(u, v) = (u, y(u, v), r(u, y(u, v),− sin v)). We de-
fine y(u, v) = yu,min + (sin v

2)(yu,max − yu,min). The interval [yu,min, yu,max] de-
notes the y-range of the ellipse that S induces on the plane x = u. The function
r(x, y, s) returns the minimal (s ≤ 0) or maximal (s > 0) element of RS,x,y :=
{z | q(x, y, z) = 0}, |RS,x,y| ≤ 2.

However, we avoid to exploit this non-rational parameterization. Looking
closer at Φ and φS , we observe that the sin-function horizontically decomposes Φ
into two rectangular areas, namely Φ0 := [l, r]× [0, π] and Φ1 := [l, r]× (π, 2π). It
holds that φ(Φ0) forms the (closed, i. e., with silhouette) lower part of S and φ(Φ1)
models the (open, i. e., without silhouette) upper part of S. As CI := φS(u, 0) =
φS(u, 2π), we observe an identification curve for this parameterization. Obviously,
CI is a connected subset of S’s silhouette. In addition, depending on the type of S,
that is, if umin is finite or not, we observe a contracted (ellipsoid, bounded end of
paraboloid) or an open (unbounded end of paraboloid, cylinder) left side of Φ; sim-
ilar for umax and the right side. In Figure 6 we illustrate this decomposition (i. e.,
parameterization) on an example of a paraboloid that is intersected by surfaces.

13The resultant is the determinant of the Silvester matrix of two polynomials [5, Chapter 4].

Arrangements on Parametric Surfaces II 23

vu
ℓ = 1

ℓ = 0

(a) On the paraboloid

ℓ = 1

ℓ = 0
v

u

(b) Simulation in the plane by in-

version of upper part

Figure 6: Illustration of a paraboloid’s parameterization: the dark-shaded (orange) area rep-
resents Φ0, the bright-shaded (yellow) area corresponds to Φ1.

The decomposition into two subdomains enables to derive a special geometry
traits for curves embedded on the reference quadric from a planar geometry traits
as basic ingredient: Given a point w0 = (u0, v0), with p0 := φS(u0, v0) = (x0, y0, z0)
being its counterpart on S, the level of p0 is ℓ ∈ {0, 1} if w0 ∈ Φℓ. We represent
a point pi = (xi, yi, zi) on S as the combination of a planar point pi(xi, yi) and
its level ℓi ∈ {0, 1}. Given two points p1, p2, the uv-lexicographic order of their
counterparts w1, w2 in the parameter space is first reflected by the order of x1 = u1

and x2 = u2. In the case that u1 = u2 we infer the v-order from (y1, ℓ1) and
(y2, ℓ2). We distinguish between 3 cases: (a) if 0 = ℓ1 < ℓ2 = 1 then w1 <v w2,
(b) if ℓ1 = ℓ2 = 0 then w1 and w2’s v-order is identical to the y-order of p1 and
p2, and finally, (c) if ℓ1 = ℓ2 = 1 then w1 and w2’s v-order is the opposite of p1

and p2’s y-order.
Similarly, we represent an arc cv on S with a u-monotone pre-image by a

projected arc cv that is enhanced by three levels: ℓmin at the minimal end of cv,
ℓmax at the maximal end of cv, and ℓ representing the level in the interior of cv,
which must be constant for all interior points. As Φ0 is closed, an arc with ℓ = 1
(lying on the upper part of S) can have ends that lie on S’s silhouette, that is,
having ℓmin = 0, or ℓmax = 0, or both. This holds in particular if an end meets the
identification curve.

We provide a geometry traits respecting this parameterization based on the
planar Curved kernel via analysis 2 which is instantiated with Cgal’s Alge-

braic curve kernel 2 that supports arbitrary-degree algebraic curves in the pro-
jection plane. Our modifications and extensions are simple recombinations of the
existing planar counterparts.

• We assign levels to planar objects and replace all predicates that involve pla-
nar y-comparisons with versions that respect the partitioning of Φ, that is,

24 Berberich, Fogel, Halperin, Kerber and Setter

implementing the new v-comparison. Those predicates first compare levels,
and in case both input objects lie on the upper part of S, return the inversed
result of the original predicate. Geometric constructions, such as the inter-
section operation, are also replaced by implementations that rely on planar
constructions, but whose output is now “levelled” onto S.

• Following [8] we provide comparisons of curve-ends (and points) near the
boundaries of Φ, that is, close to contracted or open boundaries (in u-direction)
or close to the identification (in v-direction). We only discuss the comparison
near a left contraction point; the other predicates are implemented similarly.
Consider two curves on S approaching the left contraction point. If one of
their pre-images belongs to Φ0 and the other to Φ1, the order is determined
by the assigned levels. Otherwise, consider the corresponding planar situa-
tion: both projected curves emanate from the projected contraction point.
Consequently, their order in parameter space slightly to the right of the con-
tracted side is given by the y-order of the planar curves slightly to the right
of their minimal intersection (which coincides with the projected contraction
point). In the case that both pre-images belong to Φ1, we invert the result of
the planar y-comparison to the right of the projected contraction point.

• Using similar combinations of planar operations, we can easily decide whether
a given curve or point lies on the identification or belongs to the left or right
side of the boundary.

• We are also required to compare points on the identification curve. Knowing
that x(φS(u, v)) = u, we can simply reuse the planar comparison of points’
x-coordinates.

The additional comparisons of levels are negligible compared to the opera-
tions on planar curves of degree up to 4 that determine the overall performance
of this geometry traits. This bound is also tight for rational parameterizations
of elliptic quadrics, as done with the cyclide. There exist smaller-degree parame-
terizations, which would lead to smaller-degree curves. But those curves are then
defined over a non-trivial extension field, namely with square-roots. Although they
can be handled by Cgal’s algebraic kernel, its efficiency suffers.

The topology of the reference quadric S requires special handling. We next
discuss details of our topology-traits class that combines the various cases (i. e., el-
lipsoid, paraboloid, and cylinder). Remember that the topology-traits class mainly
helps to consistently construct a eDcel respecting the surface’s topology.

• The initial record of the eDcel is a single face, which is bounded if S is an
ellipsoid, and unbounded if S is a paraboloid or a cylinder.

• It maintains the vertices related to the boundary of the parameter space.
Vertices Vleft and Vright are designated to represent a contraction point, or an
open end, depending on whether S is an ellipsoid (both sides contracted), a
cylinder (both sides unbounded), or a paraboloid (one side unbounded, one
side contracted). Vertices on S’s top-bottom identification curve are main-
tained in a sorted sequence (std::map). The order of stored vertices is defined

Arrangements on Parametric Surfaces II 25

by the order of attached points using the corresponding geometry-traits func-
tor. The location of a curve-end in the circular list of curves incident to a
vertex related to the boundary is implemented by clever combinations of
planar comparisons of curves in the neighborhood of the planar point.

• Following [8], the topology traits also helps to decide whether the insertion
of a curve results in face split and the nesting of faces. Depending on the
type of S, we decided to follow the different strategies: for an ellipsoid or
paraboloid, we ensure exactly one outermost face. In case of an ellipsoid,
this face always contains the image of the parameter space’s upper right
corner, that is, the “west pole”. For a paraboloid, the selected outermost is
always unbounded, either the image of the upper right corner of Φ (if the
paraboloid opens to the right), or the image of the lower left corner of Φ
(if the paraboloid opens to the left). No such face is maintained, if S is
an unbounded cylinder. In particular, faces that contain a non-contractible
closed curve are “outermost faces”. We refer the reader to [8] for more details
on surfaces with an identification curve.

We instantiated the Arrangement on surface 2

class-template with the two described traits classes,
which resulted in a robust algorithm to compute the ar-
rangement on an x-elliptic quadric. Our software success-
fully constructs even highly degenerate arrangements.
The figure to the right shows such an example on an
ellipsoid induced by 23 other ellipsoids intersecting it.
Further experimental results are given in Section 3.3.

3.3. Results

We measured the performance when computing the arrangement on given base
surfaces intersecting a set of given surfaces using our new geometry-traits and
topology-traits classes. Since both geometry-traits classes reduce their computa-
tions to a planar one, we also compare the obtained results with corresponding
planar arrangements: for quadrics, we compute the lower and upper subdivision
as in [10]. Note that, due to the “level”-parameterization, the task of decomposing
into sweepable curves is similar for planar and embedded arrangements. For cy-
clides, we compute the arrangement of curves in the cyclide’s uv-parameter space
using Cgal’s topology-traits class for the unbounded plane.

All experiments were executed on an AMD Dual-Core Opteron(tm) 8218
multi-processor Debian Etch platform, each core equipped with 1 MB internal
cache and clocked at 1 GHz. The total memory consists of 32 GB. As compiler we
used g++ in version 4.1.2 with flags -O2 -DNDEBUG. We rely on exact arithmetic
number types provided by Core and utilize Cgal’s prototypical Algebraic -

curve kernel 2 for analyses of algebraic curves in the plane.

Cyclide. In our tests, we used two different reference cyclides. First, the standard

torus ST with a = 2, b = 2, µ = 1, centered at the origin with no applied rotation.

26 Berberich, Fogel, Halperin, Kerber and Setter

Table 3: Running times (in seconds) to construct arrangements on ST or SC induced by
algebraic surfaces.

Reference: torus ST

Split sweep planar arrangement sweep toroid arrangement
Instance #S t (s) #V #E #F t (s) #V #E #F t (s)

ipl-1 10 0.05 146 190 93 0.09 119 190 71 0.09
ipl-1 20 0.10 440 682 337 0.48 384 682 298 0.48
ipl-1 50 0.27 1960 3363 1642 1.73 1837 3363 1526 1.87
ipl-2 10 0.22 392 575 252 1.03 358 575 217 0.85
ipl-2 20 0.59 1301 2147 1014 2.46 1211 2147 937 2.55
ipl-3 10 1.02 593 847 355 3.60 542 847 305 3.82
ipl-3-6points 10 1.39 787 1092 466 29.78 680 1092 412 31.04
ipl-3-2sing 10 1.15 794 1062 429 4.42 694 1062 368 4.67
ipl-4 10 6.40 858 1204 483 43.57 785 1204 419 44.02
ipl-4-6points 10 9.83 1100 1529 598 440.71 989 1529 540 451.91
ipl-4-2sing 10 8.50 1034 1471 602 44.28 933 1471 538 45.51

Reference: ring Dupin cyclide SC

Split sweep planar arrangement sweep cyclidean arrangement
Instance #S t (s) #V #E #F t (s) #V #E #F t (s)

ipl-1 10 0.11 204 280 147 0.35 169 280 111 0.42
ipl-1 20 0.09 539 808 420 0.45 456 808 352 0.77
ipl-1 50 0.22 3425 6084 3052 3.11 3228 6084 2856 3.56
ipl-2 10 0.20 506 710 313 1.01 450 710 260 1.02
ipl-2 20 0.71 1448 2247 1050 2.86 1323 2247 924 2.71
ipl-3 10 1.15 534 682 269 4.21 474 682 208 4.09
ipl-4 10 8.69 1064 1406 495 43.74 988 1406 418 42.24

Second, a non-torical cyclide SC with a = 13, b = 12 and µ = 11. We remark
that our implementation allows to transform a cyclide in standard position and
orientation, that is, to translate it by a vector and to rotate it with respect to a
rotational matrix with rational entries. Thus, we translated SC ’s center to (1, 1, 1)
and applied a rotation defined by the matrix

1

3





2 −2 1
2 1 −2
1 2 2





We intersect both with algebraic surfaces of fixed degree that are interpolated by
randomly chosen points on a three-dimensional grid, having no or some degen-
eracies with respect to ST : the surfaces in “6points” instances share at least 6
common points on ST , one of them is the pole of ST . The surfaces in the “2sing”
instances induce (at least) two singular intersections on ST .

Our obtained running times are listed in Table 3. For such random examples,
our algorithm shows a good general behavior, even for higher degree surfaces.
Degeneracies with respect to the reference surface result in higher running times
as the instance “6points” shows.

Unlike the planar approach, our direct method yields the aspired eDcel rep-
resentation of the induced arrangement on the surface. This can be observed by
the reduced number of vertices and faces in the output, due to identifications. As

Arrangements on Parametric Surfaces II 27

previously presented, our traits classes provide the few boundary-specific tasks to
achieve this goal. The performance penalty is marginal, so the efficiency of the
implementation is not harmed by the topology-traits class. This is not surprising,
as the computations in a topology-traits hardly trigger any costly geometric op-
eration. Thus, we infer that the chosen approach strongly hinges on the efficiency
of the underlying (bivariate) algebraic kernel.

 0

 20

 40

 60

 80

 100

 120

 10 20 40 80

S
ec

on
ds

Number of intersecting quadrics

Ellipsoid
Cylinder

Paraboloid

Quadrics. For these experiments we intersect
instances from [40] containing 10, 20, 40, and 80
quadrics with three random reference quadrics
(ellipsoid, cylinder, and paraboloid). All sur-
faces have 10-bit coefficients. Table 4 lists the
observed running times with structural data,
that is, number of eDcel-records. The figure
to the right illustrates the running times with
respect to the number of intersecting quadrics
and the type of reference quadric. As one ex-
pects for a sweep-line approach, growth of running time is super linear in the
number of quadrics. Clearly, the more complex the arrangement, the more time
is required to compute it. To give a better feeling for the relative time consump-
tion, we indicate the time spent for each pair of half-edges in the eDcel of the
computed arrangement. This time varies in the range between 2.0 ms and 4.5 ms.
Other parameters have significant effect on the running time as well, for example
the bit-size of the coefficients of the intersection curves.

4. Conclusions

We addressed the problem of practically
computing arrangements on non-linear sur-
faces, such as spheres, ellipsoids, cylinders,
and tori. Using the framework of the com-
panion paper [8], this task becomes nearly
as simple as the construction planar arrange-
ments. Moreover, our implementations ben-
efit from other software tools available in
the Arrangement on surface 2 package of
Cgal and its derivatives [59]. As an example, the picture on the right shows an
overlay of two arrangements (displayed in red and blue color) on a cyclide. Other
immediate applications are Boolean set operations on surfaces and point location
queries in an arrangement structure.

Another application has been considered by Hemmer et al. [41]. They con-
sider an arrangement of quadrics in R3, and describe the local neighborhood of
each vertex in a so-called environment map. For an exact representation of this
environment map, they simply compute the arrangement on a sufficiently small

28 Berberich, Fogel, Halperin, Kerber and Setter

Table 4: Comparing planar and quadrical topologies. We report performance measures (in
seconds) for random quadrics intersecting three reference quadrics and distinguish the com-
putation of two planar arrangements from the computation of one quadrical arrangement.

Reference: Ellipsoid
Split sweep two planar arrangements sweep ellipsoidal arrangement

t (s) #V #E #F t (s) #V #E #F t (s)

10 2.36 213+217 295+289 84+84 1.29 396 584 190 1.36
20 4.18 544+540 844+838 302+300 4.53 1038 1682 646 4.90
40 7.62 1831+1837 3192+3210 1363+1375 20.57 3568 6402 2836 21.50
80 15.47 7187+7191 13363+13379 6178+6190 97.66 14144 26742 12600 104.56

Reference: Cylinder
Split sweep two planar arrangements sweep cylindrical arrangement

t (s) #V #E #F t (s) #V #E #F t (s)

10 1.65 191+179 260+240 71+64 1.17 344 500 158 1.23
20 3.38 551+509 852+780 303+273 4.74 1012 1632 622 5.00
40 6.76 1821+1755 3168+3040 1349+1287 21.28 3474 6208 2736 22.57
80 14.28 7086+6914 13179+12831 6095+5919 100.91 13768 26010 12244 108.76

Reference: Paraboloid
Split sweep two planar arrangements sweep paraboloidal arrangement

t (s) #V #E #F t (s) #V #E #F t (s)

10 1.02 28+16 37+13 11+2 0.14 36 50 17 0.14
20 1.86 124+96 181+129 60+35 0.93 196 310 116 0.96
40 4.83 469+337 787+533 321+198 5.21 756 1320 566 5.38
80 9.87 1303+1267 2309+2272 1008+1006 20.25 2472 4580 2110 20.90

ball containing the vertex, induced by the intersection of the ball with all quadrics
in the arrangement. As a result, they compute all edge cycles that bound faces of
the arrangement, an important step towards the complete representation of the
three-dimensional arrangement.

Computational biology frequently employs spherical arrangements in molecu-
lar modeling: each sphere represents an atom of a molecule and the arrangement on
the sphere represents the intersection pattern with neighboring atoms. Geodesics
are insufficient to support this application, but there is an on-going effort to pro-
vide a specialized geometric-traits class for small circles on the sphere based on the
results in [15, 18]. Our spherical topology-traits class remains suitable for this case
as well. Beyond the spherical modelling of atoms, their anisotropic interactions can
be represented using ellipsoids as primitive objects. In all cases Arrangement on -

surface 2 is instantly usable for algorithmic problems within this context.

Future work. Natural directions for further work consist of the provision of geometry-
traits classes for other families of curves embedded on the available surfaces and
the augmentation of the set of supported parametric surfaces. Conceivable, for
instance, are specialized geometry-traits classes that efficiently deal with geodesic
arcs on quadrics or cyclides. For other surfaces with rational parameterization, it is
mainly the algebraic degree of the curves in parameter space that limits practical
feasibility.

Arrangements on Parametric Surfaces II 29

Another famous example for a surface with rational parameterization is the
Möbius strip. It has two bounded sides and two opposite twisted-identified sides.
The latter turns the surface non-orientable, which constitutes another problem:
while we would be able to provide all required geometric operations, we are unable
to represent an induced arrangement using a Dcel-like representation. Guibas
and Stolfi’s quad-edge data structure is a sufficient alternative [36]. As a partial
achievement, it may be interesting to extract all intersections, with the help of a
sweep line invocation, or to maintain a “virtual cut”, that is, not to merge faces
(and their boundary cycles) incident to the “twisted-identification”.

We also see possible applications in rounding. Piecewise linear curves in the
plane, also referred to as polylines, are of particular interest, as they can be used to
approximate more complex curves. At the same time they are easier to deal with
in comparison to higher-degree algebraic curves, as rational arithmetic is sufficient
to carry out exact computations on them. A similar argument holds for piecewise
geodesic curves. Our software package already supports planar polylines. As our
implementation is generic, supporting piecewise (geodesic) curves on surfaces as
well, is just a matter of proper instantiation of existing components and enables,
for instance, approximations of curves on the sphere with poly-geodesics.

The topology-traits classes for spheres and cyclides might come in handy in
other situations, not directly related to 3D-applications on a reference surface.
One concrete example is robot motion planning, where the configuration space of
a certain one-link or two-link robot can be modelled by a periodic space. More
generally, periodic spaces and computations therein are of great importance in
various fields — the authors of [14] mention the need of (three-dimensional) peri-
odic spaces in astronomy, biomedical computing, solid-state chemistry, physics of
condensed matter and fluid dynamics.

Acknowledgments

We thank Ron Wein for fruitful collaboration on the research and development of
the generic framework the work described in this paper is based on. We also thank
Ron for many useful advises and rich discussions directly related to the material
described in this paper.

We thank Pavel Emeliyanenko for his work on visualizing arrangements em-
bedded into algebraic surfaces in three-dimensional space, which is utilized in
Section 3.

References

[1] Pankaj K. Agarwal, Otfried Schwarzkopf, and Micha Sharir. The overlay of lower
envelopes and its applications. Discrete & Computational Geometry, 15:1–13, 1996.

[2] Pankaj K. Agarwal and Micha Sharir. Arrangements and their applications. In Jörg-
Rüdiger Sack and Jorge Urrutia, editors, Handbook of Computational Geometry,

30 Berberich, Fogel, Halperin, Kerber and Setter

chapter 2, pages 49–119. Elsevier Science Publishers, B.V. North-Holland, Amster-
dam, North-Holland, 2000.

[3] Franz Aurenhammer and Rolf Klein. Voronoi diagrams. In Jörg-Rüdiger Sack and
Jorge Urrutia, editors, Handbook of Computational Geometry, chapter 5, pages 201–
290. Elsevier Science Publishers, B.V. North-Holland, Amsterdam, North-Holland,
2000.

[4] Matthew H. Austern. Generic Programming and the STL. Addison-Wesley, 1999.

[5] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in Real Al-
gebraic Geometry, volume 10 of Algorithms and Computation in Mathematics.
Springer, 2nd edition, 2006.

[6] Eric Berberich. Robust and Efficient Software for Problems in 2.5-Dimensional Non-
Linear Geometry (Algorithms and Implementations). Ph.D. thesis, Universität des
Saarlandes, Germany, 2008.

[7] Eric Berberich, Efi Fogel, Dan Halperin, Kurt Mehlhorn, and Ron Wein. Sweeping
and maintaining two-dimensional arrangements on surfaces: A first step. In Pro-
ceedings of 15th Annual European Symposium on Algorithms (ESA), volume 4698 of
LNCS, pages 645–656. Springer-Verlag, 2007.

[8] Eric Berberich, Efi Fogel, Dan Halperin, Kurt Mehlhorn, and Ron Wein. Arrange-
ments on parametric surfaces I: General framework and infrastructure, 2010. Ac-
cepted to Mathematics in Computer Science.

[9] Eric Berberich, Efi Fogel, Dan Halperin, and Ron Wein. Sweeping over curves and
maintaining two-dimensional arrangements on surfaces. In Abstracts of 23rd Euro-
pean Workshop on Computational Geometry, pages 223–226, 2007.

[10] Eric Berberich, Michael Hemmer, Lutz Kettner, Elmar Schömer, and Nicola Wolpert.
An exact, complete and efficient implementation for computing planar maps of
quadric intersection curves. In Proceedings of 21st Annual ACM Symposium on Com-
putational Geometry (SoCG), pages 99–106. Association for Computing Machinery
(ACM) Press, 2005.

[11] Eric Berberich and Michael Kerber. Exact arrangements on tori and Dupin cyclides.
In Proceedings of the 2008 ACM Symposium on Solid and Physical Modeling (SPM),
pages 59–66. Association for Computing Machinery (ACM) Press, 2008.

[12] Wolfgang Boehm. On cyclides in geometric modeling. Computer Aided Geometric
Design, 7:243–255, 1990.

[13] Jean-Daniel Boissonnat, Camille Wormser, and Mariette Yvinec. Curved Voronoi
diagrams. In J.-D. Boissonnat and M. Teillaud, editors, Effective Computational
Geometry for Curves and Surfaces, pages 67–116. Springer-Verlag, 2007.

[14] Manuel Caroli and Monique Teillaud. Compute 3D periodic triangulations. Technical
Report 6823, Inria Sophia-Antipolis, 2009.

[15] Frédéric Cazals and Sébastien Loriot. Computing the arrangement of circles on a
sphere, with applications in structural biology. Computational Geometry: Theory
and Applications, 42(6-7):551–565, 2009.

[16] Vijaya Chandru, Debasish Dutta, and Christoph M. Hoffmann. On the geometry of
Dupin cyclides. The Visual Computer, 5(5):277–290, 1989.

Arrangements on Parametric Surfaces II 31

[17] Mark de Berg, Mark van Kreveld, Mark Overmars, and Otfried Schwarzkopf. Compu-
tational Geometry: Algorithms and Applications. Springer-Verlag, Berlin, Germany,
2nd edition, 2000.

[18] Pedro M.M. de Castro, Frédéric Cazals, Sébastien Loriot, and Monique Teillaud.
Design of the CGAL 3D Spherical Kernel and application to arrangements of circles
on a sphere. Computational Geometry: Theory and Applications, 42(6-7):536–550,
2009.

[19] Charles Dupin. Applications de Géométrie et de Méchanique. Bachelier, Paris, 1822.

[20] Herbert Edelsbrunner and Raimund Seidel. Voronoi diagrams and arrangements.
Discrete & Computational Geometry, 1:25–44, 1986.

[21] Arno Eigenwillig and Michael Kerber. Exact and efficient 2D-arrangements of ar-
bitrary algebraic curves. In Proceedings of 19th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 122–131, Philadelphia, PA, USA, 2008. Society
for Industrial and Applied Mathematics (SIAM).

[22] Arno Eigenwillig, Michael Kerber, and Nicola Wolpert. Fast and exact geometric
analysis of real algebraic plane curves. In Proceedings of the 2007 International
Symposium on Symbolic and Algebraic Computation, pages 151–158, New York, NY,
USA, 2007. Association for Computing Machinery (ACM) Press.

[23] Arno Eigenwillig, Lutz Kettner, Werner Krandick, Kurt Mehlhorn, Susanne Schmitt,
and Nicola Wolpert. A Descartes algorithm for polynomials with bit-stream coeffi-
cients. In 8th International Workshop on Computer Algebra in Scientific Computing,
volume 3718 of LNCS, pages 138–149, 2005.

[24] Pavel Emeliyanenko. Visualization of points and segments of real algebraic plane
curves. M.Sc. thesis, Universität des Saarlandes, Germany, 2007.

[25] Ioannis Zacharias Emiris and Menelaos Ioannis Karavelas. The predicates of the
Apollonius diagram: Algorithmic analysis and implementation. Computational Ge-
ometry: Theory and Applications, 33(1-2):18–57, 2006.

[26] Ioannis Zacharias Emiris, Elias P. Tsigaridas, and George Tzoumas. Voronoi diagram
of ellipses in CGAL. In Abstracts of 24th European Workshop on Computational
Geometry, pages 87–90, 2008.

[27] Andreas Fabri, Geert-Jan Giezeman, Lutz Kettner, Stefan Schirra, and Sven
Schönherr. On the design of Cgal a computational geometry algorithms library.
Software — Practice and Experience, 30(11):1167–1202, 2000.

[28] Efi Fogel. Minkowski Sum Construction and other Applications of Arrangements
of Geodesic Arcs on the Sphere. Ph.D. thesis, The Blavatnik School of Computer
Science, Tel-Aviv University, 2009.

[29] Efi Fogel and Dan Halperin. Exact and efficient construction of Minkowski sums of
convex polyhedra with applications. In Proceedings of 8th Workshop on Algorithm
Engineering and Experiments, 2006.

[30] Efi Fogel and Dan Halperin. Exact and efficient construction of Minkowski sums of
convex polyhedra with applications. Computer-Aided Design, 39(11):929–940, 2007.

[31] Efi Fogel, Dan Halperin, Lutz Kettner, Monique Teillaud, Ron Wein, and Nicola
Wolpert. Arrangements. In J.-D. Boissonnat and M. Teillaud, editors, Effective Com-
putational Geometry for Curves and Surfaces, chapter 1, pages 1–66. Springer-Verlag,
2007.

32 Berberich, Fogel, Halperin, Kerber and Setter

[32] Efi Fogel, Ophir Setter, and Dan Halperin. Exact implementation of arrangements of
geodesic arcs on the sphere with applications. In Abstracts of 24th European Work-
shop on Computational Geometry, pages 83–86, 2008.

[33] Efi Fogel, Ophir Setter, and Dan Halperin. Movie: Arrangements of geodesic arcs
on the sphere. In Proceedings of 24th Annual ACM Symposium on Computational
Geometry (SoCG), pages 218–219. Association for Computing Machinery (ACM)
Press, 2008.

[34] Andrew Russel Forsyth. Lectures on the Differential Geometry of Curves and Sur-
faces. Cambridge University Press, 1912.

[35] Komei Fukuda. From the zonotope construction to the Minkowski addition of convex
polytopes. Journal of Symbolic Computation, 38(4):1261–1272, 2004.

[36] Leonidas J. Guibas and Jorge Stolfi. Primitives for the manipulation of general sub-
divisions and the computation of Voronoi diagrams. ACM Transactions on Graphics,
4(2):74–123, 1985.

[37] Peter Hachenberger, Lutz Kettner, and Kurt Mehlhorn. Boolean operations on 3D se-
lective Nef complexes: Data structure, algorithms, optimized implementation and ex-
periments. Computational Geometry: Theory and Applications, 38(1-2):64–99, 2007.
Special issue on Cgal.

[38] Dan Halperin. Arrangements. In Jacob E. Goodman and Joseph O’Rourke, edi-
tors, Handbook of Discrete and Computational Geometry, chapter 24, pages 529–562.
Chapman & Hall/CRC, 2nd edition, 2004.

[39] Dan Halperin and Christian R. Shelton. A perturbation scheme for spherical arrange-
ments with application to molecular modeling. Computational Geometry: Theory and
Applications, 10:273–287, 1998.

[40] Michael Hemmer. Exact Computation of the Adjacency Graph of an Arrangement of
Quadrics. Ph.D. thesis, Johannes-Gutenberg-Universität, Mainz, Germany, 2008.

[41] Michael Hemmer, Sebastian Limbach, and Elmar Schömer. Continued work on the
computation of an exact arrangement of quadrics. In Collections of Abstracts of 25th
European Workshop on Computational Geometry, pages 313–316, 2009.

[42] Susan Hert, Michael Hoffmann, Lutz Kettner, Sylvain Pion, and Michael Seel.
An adaptable and extensible geometry kernel. In Proceedings of 5th International
Workshop on Algorithm Engineering (WAE), volume 2141 of LNCS, pages 79–90.
Springer-Verlag, 2001.

[43] Susan Hert and Stefan Schirra. 3D convex hulls. In Cgal Editorial Board, editor,
Cgal User and Reference Manual. 3.4 edition, 2008.

[44] Craig D. Hodgson, Igor Rivin, and Warren D. Smith. A characterization of convex
hyperbolic polyhedra and of convex polyhedra inscribed in the sphere. Bull. (New
Series) of the AMS, 27:246–251, 1992.

[45] Hiroshi Imai, Masao Iri, and Kazuo Murota. Voronoi diagram in the Laguerre ge-
ometry and its applications. SIAM Journal on Computing, 14(1):93–105, 1985.

[46] Vijay Karamcheti, Chen Li, Igor Pechtchanski, and Chee K. Yap. A core library
for robust numeric and geometric computation. In Proceedings of 15th Annual ACM
Symposium on Computational Geometry (SoCG), pages 351–359. Association for
Computing Machinery (ACM) Press, 1999.

Arrangements on Parametric Surfaces II 33

[47] Michael Kerber. On filter methods in cgal’s 2D curved kernel. Technical Report
ACS-TR-243404-03, Algorithms for Complex Shapes, 2008.

[48] Michael Kerber. Geometric Algorithms for Algebraic Curves and Surfaces. Ph.D.
thesis, Universität des Saarlandes, Germany, 2009.

[49] Lutz Kettner. Using generic programming for designing a data structure for polyhe-
dral surfaces. Computational Geometry: Theory and Applications, 13(1):65–90, 1999.

[50] Richard Kunze, Franz-Erich Wolter, and Thomas Rausch. Geodesic Voronoi dia-
grams on parametric surfaces. In Computer Graphics International Conference, page
230, Washington, DC, USA, 1997. IEEE Computer Society Press.

[51] Michal Meyerovitch. Robust, generic and efficient construction of envelopes of sur-
faces in three-dimensional space. In Proceedings of 14th Annual European Symposium
on Algorithms (ESA), volume 4168 of LNCS, pages 792–803. Springer-Verlag, 2006.

[52] Michal Meyerovitch, Ron Wein, and Baruch Zukerman. 3D envelopes. In Cgal Ed-
itorial Board, editor, Cgal User and Reference Manual. 3.4 edition, 2008.

[53] R. E. Miles. Random points, sets and tessellations on the surface of a sphere. The
Indian Journal of Statistics, 33:145–174, 1971.

[54] Hyeon-Suk Na, Chung-Nim Lee, and Otfried Cheong. Voronoi diagrams on the
sphere. Computational Geometry: Theory and Applications, 23(2):183–194, 2002.

[55] Atsuyuki Okabe, Barry Boots, Kokichi Sugihara, and Sung Nok Chiu. Spatial Tessel-
lations: Concepts and Applications of Voronoi Diagrams. John Wiley & Sons, New
York, NY, 2nd edition, 2000.

[56] Guilherme Albuquerque Pinto and Pedro Jussieu de Rezende. Additively weighted
Voronoi diagram on the oriented projective plane. In The Canadian Conference on
Computational Geometry, 2000.

[57] Ophir Setter, Micha Sharir, and Dan Halperin. Constructing two-dimensional
Voronoi diagrams via divide-and-conquer of envelopes in space. In Proceedings of
6th Annual International Symposium on Voronoi Diagrams in Science and Engi-
neering (ISVD), pages 43–52, 2009.

[58] Kokichi Sugihara. Laguerre Voronoi diagram on the sphere. Journal for Geometry
and Graphics, 6(1):69–81, 2002.

[59] Ron Wein, Efi Fogel, Baruch Zukerman, and Dan Halperin. Advanced programming
techniques applied to Cgal’s arrangement package. Computational Geometry: The-
ory and Applications, 38(1–2):37–63, 2007. Special issue on Cgal.

[60] Ron Wein, Efi Fogel, Baruch Zukerman, and Dan Halperin. 2D arrangements. In
Cgal Editorial Board, editor, Cgal User and Reference Manual. 3.4 edition, 2008.

[61] Chee K. Yap. Robust geometric computation. In J. E. Goodman and J. O’Rourke,
editors, Handbook of Discrete and Computational Geometry, chapter 41, pages 927–
952. Chapman & Hall/CRC, 2nd edition, 2004.

Eric Berberich
School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel

e-mail: ericb@post.tau.ac.il

34 Berberich, Fogel, Halperin, Kerber and Setter

Efi Fogel
School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
e-mail: efif@post.tau.ac.il

Dan Halperin
School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
e-mail: danha@post.tau.ac.il

Michael Kerber
Max-Planck-Institut für Informatik, D1: Algorithms and Complexity D-66123 Saarbrücken,
Germany
e-mail: mkerber@mpi-inf.mpg.de

Ophir Setter
School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
e-mail: ophir.setter@cs.tau.ac.il

	1. Introduction
	2. A Concretization with Rational Arithmetic and its Application
	2.1. Arrangements of Geodesic Arcs Embedded on the Sphere
	2.2. Minkowski Sum of Polytopes
	2.2.1. Gaussian Map Construction
	2.2.2. Minkowski-sum Construction

	2.3. Voronoi Diagrams on the Sphere
	2.3.1. Envelopes on Surfaces
	2.3.2. Exact Construction of Voronoi Diagrams on the Sphere

	3. Concretizations with Algebraic Arithmetic
	3.1. On a (ring) Dupin cyclide
	Our approach

	3.2. Arrangements of Intersection Curves on a Quadric
	Our approach

	3.3. Results
	Cyclide
	Quadrics

	4. Conclusions
	Acknowledgments
	References

