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Summary. The paper gives an overview of four main results of the author adhering to the
field of 3-dimensional Euclidean kinematics: At first we build up all motions with a two-
parametric manifold of plane point paths as compositions of DARBOUX-motions with transla-
tion groups. Secondly these methods are extended to Euclidean similarities (equiform motions)
by the use of scaling groups instead of the translation groups. These two-parametric equiform
motions again have a two-parametric manifold of plane point paths — moreover, they contain all
equiform DARBOUX-motions as one-parametric submotions. In the third section we outline an
algorithm (based on plane equiform motions) to generate a series of overconstrained mechanisms
with spherical 2R-joints.The last section leads us to robotics and the Stewart-Gough-platforms:
By using equiform motions we are able to define a geometrically invarant “rigidity rate” of a
platform at a given position.

Introduction
This paper shall give a short overview of some parts of the author’s geomet-

ric work. It is focused on kinematics and the use of similarity concepts, including
some examples and stating some results’.

1. One-parametric spatial motions with many plane point paths
Within the group of Euclidean displacements B of the Euclidean 3-space a

one-parametric motion £ (¢#) of a moving frame X with respect to a fixed frame
S * can be described” by

(1.1) E(): Z*FE ) =d* () + A@) X

with orthogonal 3x3-matrices A(r). There exist nontrivial’ motions, which move

all points of Z in planes of £ *. G. DARBOUX [1.1] listed them and was able to
show that the general case has the following standard representation

0 cost -sint 0
(1.2) C®O): X*parpous (X58) = asint + |sint cost O|x
bsint +c(1-cost) 0 0 1

with ¢ €[0,27] and real constants a,b,c. These motions are called Darboux-
motions. They are compositions of spatial extensions of plane Cardan-motions

" The references follow the sections of the paper.
? Points are marked by their position vectors ¥ = (x,y,z)" with respect to a Cartesian coordinate frame.
* The trivial examples are extensions of plane motions into the 3-space or pure translations with plane paths.



and harmonic oscillations orthogonal to its basic plane. The general point paths
are ellipses.

In [1.2] and [1.3] I contributed to the question wether there are nontrivial motions
with a two-parametric set of points with plane paths: The following two-
parametric motion

(1.3) X*(X,t,u) =X *parboux (X,t) + ué*

with a fixed vector &* = (d,e, f)" and a second parameter uEN is the composi-
tion of the Darboux- motion (1.2) and the group of translations () with the di-
rection e *. It has point-paths, which can be written as

0 d -y X
(1.4) xX*(X,t,u) = O |+u|e|+|x+a|sint +| y [cost.
c+z i b =c

General points move on cylinders of degree 2 given by the Darboux-path ellipse
and generators parallel to € *. (1.4) makes clear, that all point paths are affinly
equivalent to an arbitrary path on a nondegenerate cylinder of degree 2. Iff the last
3 vectors in (1.4) are linearly dependent, the path surface of the corresponding

point will be a plane. These points of X are characterized by the equation

d -y «x
(1.5) det|e x+a y |=0.
f b -c

This equation in general characterizes points on a cylinder of revolution, which
contains the fixed direction of the given motions.* So we have found an example
of motions with a two-parametric family of plane point paths. All these planes are
parallel to the fixed direction é *. The harder part of the work is to show, that
(1.3) contains standard representations of all such motions. With the help of dif-
ferential geometric methods (see [1.2.]) we gain the following

Result 1.1: All nontrivial Euclidean motions of the 3-space with a two-parametric
manifold of plane point paths are gained by combining Darboux- motions with
one-parametric translation groups with a fixed direction. These motions are two-
parametric and have the standard representation (1.3). The point paths in general
are situated on cylinders of degree two. FExactly the points of the cylinder of
revolution (1.5) — or in the special case the points of the plane —move on planes.

2. Darboux- motions within the group of Euclidean similarities
Adding scaling factors po(t) to (1.1) we get a representation of the seven- paramet-

ric group A, of similarities® of the Euclidean 3-space. A. KARGER [2.1] used
Lie-group methods in order to give a complete list of all types of equiform mo-

* In some cases this cylinder degenerates: Then it splits into a plane and the plane at infinity.
° This group is sometimes referred as equiform group of the Euclidean space.



tions, which move all points of the moving frame on plane paths. These motions
are called equiform Darboux- motions. To work out examples of equiform motions
with a two-parametric familiy of plane point paths we can generalize the proce-
dure of section 1 (see [2.2]): We fix a point A*EZ* (with position vector

d*=(d,e, f)') and combine the group o (u) of scalings with centre A* and
scaling factor u € R with the Darboux- motion (1.2). We gain a two-parametric
equiform motion o(u)e § (¢) with a standard representation

0 cost -sint 0
(21) xXx*(X,t,u) =a*(1-u)+u[ asint + [sint cost O[X].
bsint +c(1-cost) 0 0 1

From its generation it is clear, that the general point-paths of this two-parametric
equiform motion are situated on cones of degree 2. They contain the Darboux-path
ellipse and have their common vertex in the scaling centre A *. As in section 1
(2.1) can be rewritten in terms of {1, u, u sin ¢, u cos t}. Any point path on a non-
degenerate cone is affinly equivalent to all other paths. Exactly those points of =
characterized by the equation

-d -y X
(2.2) det| -e x+a y |=0
z+c-f b -c

describe plane paths. (2.2) in general determines an algebraic surface of degree 3,
which sometimes is referred to as MULLER’s surface. For these points the affinity
mentioned above is singular.

We can restrict a point-path on a nondegenerate cone to remain in a given plane.
This specifies special one-parameter equiform motions within the two-parametric
(2.1) one. Tn [2.2] I was able to show that these one-parametric cquiform motions
move all points on plane paths. So these motions are equiform Darboux-motions —
all different types of A. KARGER [2.1] can be built up in this way. We have the

Result 2.1: Combining Darboux- motions with one-parametric scaling groups
with a fixed center A*EZ * gives two-parametric equiform motions with the stan-

dard representation (2.1). The point paths in general are situated on cones of de-
gree two. Exactly the points of the MULLER-surface (2.2) move on planes. All
equiform Darboux-motions can be seen as special one-parametric submotions

within the two-parametric equiform motion (2.1).

3. Some remarkable overconstrained mechanisms
In the Euclidean plane there are equiform motions ¢ (¢) := E/E * (fixed plane E*,

moving plane E) with a globally fixed point A *€ E * which move all points of E
on straight lines (not through A*). A standard representation of these motions is
(3.1) e(t): x*(x,y,t) = p(t)(xcost—ysint); y*(x,y,t) = p(t)(xsint + ycost)



with the scaling factor p(f)=1/cos ¢ . Any straight line g* (not through A¥) is the

point path of exactly one point of the moving plane E. This plane configuration is
successively reflected with respect to planes o,*,i = 1,...,k. This procedure re-
sults in a series of reflected plane equiform motions ¢;(¢) = E, /E; * which all
have straight line point paths and a globally fixed point A; *€ E; *, but run in dif-
ferent planes E; * of the 3-space. Moreover, all are congruent even with respect to
their parametrisation. Given that the fixed points A4; * do not belong to the inter-
sections E; *N E,;,; * or E;_; *N E; * there exists exactly one point in E; with
its point path on E;_; *N E; *. This way, the procedure generates a chain of equi-

form plane motions, which are linked via common straight line paths. In [3.7] 1
characterized closed chains of four linked motions of this type: The configuration
can be closed iff the four points A) *:=A* and A, * either belong to a circle, a
straight line or are lying on a sphere x . In the first two cases the corresponding
planes E; * (i = 1,2,3) are gained by succesive reflections of E*:= E, * with re-
spect to the planes of symmetry of the pairs A;_;*, A; *. In the third case all planes

E; * (including E, *) have to be tangent to the sphere x .

If we perform all these linked equiform
plane motions, compose them with scal-
ings from a fixed point O* with factor
cos ¢ and extend the outcome into the 3-

_gh*é space we get chains of linked
.

DARBOUX-motions (see [3.1]-[3.7]).
Each  two  neighbouring  bodies

2; 1%,2;* can be linked via spherical

2R- joints®. Of course we can build up
two-dimensional chains of such ar-
Figure 1 rangements consisting of m=x n rigid
bodies (see [3.1]-[3.7]). There is a great
variety of such mechanisms, which can be classified with respect to their topologic
structure. Let us assume a rectangular array of rigid bodies with the topological
structure of a torus: Here m and n have to be even numbers, the number of spheri-
cal 2R-joints then has to be 2+ m= n. According to GRUBLER’s formula the theo-
retical degree of freedom of such a mechanismis F= -2xm#n—6 <0. As these
mechanisms at least provide a one-parametric mobility, we have found an inter-
esting series of overconstrained mechanisms. Figure 1 shows the photo of an ex-
ample of the case m = 4, n = 6 with the topological structure of a torus’. As 6 of
the spherical 2R-joints are 1R-joints, its theoretical degree of freedom has the
value F =- 60, but it is still moveable due to our construction.

® These considerations are a generalisation of a paper by H. STACHEL [3.8], who used this idea to prove the mobi-

lity of the so-called HEUREKA-Polyhedron.
7 Further examples can be seen on the web-page www.cis.tu.-graz./ig.




4. The rigidity-rate of a Stewart-Gough-platform in a given position
In robotics so-called Stewart-Gough-platforms (SGP) are widely used. An SGP is
a robot consisting of a fixed and a moving platform plane ¢ CZ* and ¢ C 3.

Both of these planes are linked by telescopic legs. Each leg is connected to the
fixed plane and to the moving plane by spherical linkages (see figure 2). Let us as-
sume that — at the present position - each one of the 6 leg lengths is being kept
constant. Given that the Euclidean displacements in 3-space form a 6-parameter
group, the 6 leg length conditions will — in general — prevent the mechanism from
moving. There are, however, positions where the
mechanical system surprisingly turns out to be
shaky’ or even ‘movable’. Such positions of the SGP
are called singular’. If an SGP happens to be sin-
gular at each position of the robot, we call the plat-
\‘ form ‘architecturally singular’. Such SGPs are use-
\ \ less for technical applications. A. KARGER [4.1]
characterised such cases. In cooperation with S.
MICK (see [4.3] and [4.4]) I tried to work out the
close connection to projective geometry. The result
may elucidate the structure of architecturally singu-
lar SGPs in a very geometric way:

Figure 2

Result 4.1:  The architecturally singular SGPs are exactly those whose pairs of
anchor points (X;,Y;)Ee x ¢ (i=1, ..., 6) are at least 4-fold conjugate with re-
spect to a linear manifold of correlations ¢ — ¢.

Let us now switch over to SGPs which are not architecturally singular. Singular
positions will only show up sporadically, but they have to be strictly avoided®.
Moreover it is of prime importance to rate how far the present position is from a
singular one. This question is indeed fairly tricky as the word far’ refers to some
sort of measurement which still has to be introduced in a geometrically sound (i.e.
'invariant') way. This is the moment when our similarity motions again take cen-
tre stage in our considerations [4.2]: Within the group A, of similarities the 6 leg

length conditions will no longer fix the platform’s position — in general the robot
can still perform a one-parametric equiform motion. Its infinitesimal transforma-
tion at the given position provides a possibility to rate the local deviation from the
Euclidean displacement group. This directly leads into investigations in the tan-
gent space of the corresponding Lie-groups. The action of the adjoint group in this
tangent space allows to define (singular) Non-Euclidean distances and angles. In
order to get a geometrically sensible rating we used some appropriate Non-
Euclidean angle as indicator of the rigidity of an SGP at the given position. We
sum up in

% If the robot takes on a singular position the forces exerted to the linkages tend to grow infinitely large and may
cause considerable damage to the manipulator.




Result 4.2: A given position of a Stewart-Gough-platform can be assessed by a
so-called “rigidity rate”. This rate is defined as the Non-Euclidean angle of the
tangent vector of the viewed equiform motion with respect to the tangent space of

the Euclidean displacement group.

Conclusion
I have tried to give an overview of some results in the Euclidean space, which ei-

ther was based on compositions of one-parametric motions or on the use of
Euclidean similarities. These methods enabled us to see some kinematic problems
more clearly and to develop strategies of solving them in a geometric way.
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