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Error workspace analysis of planar mechanisms

Adolf Hofmeister∗ Walter Sextro∗ Otto Röschel†

In this paper the unconstrained motion (Error workspace) of some planar systems
with joint clearance is analyzed. For the analysis, the joints are assumed to be
revolute or translational. We also assume that all joint clearances are known. The
kinematic image space is used to provide a geometric environment for the analysis of
Error workspace. In this paper the Error workspace of a four-bar linkage, of a slider-
crank mechanism and of two multiple-loop mechanisms are studied. Furthermore,
mechanisms which have folding positions due to joint clearance are studied, too.

Introduction

Joint clearances of mechanisms are the consequences of manufacturing errors or of mechanical
wear. Mechanisms of single degree of freedom have constrained motion if one input is applied.
If joint clearance is significantly large, the motion of the linkage becomes unconstrained. Many
investigations have been devoted to the study of joint clearance. Hörsken (2003) used the
Monte-Carlo method for tolerance analysis in multibody systems and computer aided design.
Wittwer et al. (2004) used the direct linearization method applied to position error in kinematic
linkage. Tsai and Lai (2004) demonstrated a method to analyze the transmission performance
of linkages that have joint clearance. Voglewede and Uphoff (2004) described in detail the
clearances of revolute joints and translational joints and study the unconstrained motion of
parallel manipulators near singular configurations. Pernkopf and Husty (2005) presented an
analysis of the reachable workspace of a spatial Stewart-Gough-Platform with planar base and
platform (SGPP) and demonstrated by means of the results of this workspace analysis, the
influence of joint clearance and manufacturing erros. Wohlhart (1999) studied the effect of a
single small translatorial backlash in one of the linear actuators of a planar and of a spatial
(Stewart-Gough) platform, in singular positions at various degrees of shakiness. Schröcker and
Wallner (2005) and Wallner et al. (2005) treated the problems of tolerances in general cases:
Either they used balls of affine transformations or they estimated tolerance zones. With help
of approximations they gave bounds for the error of estimated tolerances. Frick (2004) used
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the the kinematic mapping and an ANSI-C program to study and describe “unstable” four-bar
motion and “unstable” RPR-platform for increasing tolerance values.

If we restrict to planar Euclidean mechanisms we are able to give exact descriptions of Error
workspaces (EWS) for four-bar and slider-crank mechanism. We will use the kinematic mapping
in order to gain descriptions of the Orientation Error workspace (Ori-EWS) (= all orientations
which can be reached in at least one position) and of the Position Error workspace (Pos-EWS)
(= all positions which can be reached in at least one orientation). Each error (clearance) at a
linkage gives higher order mobility, which is displayed in the kinematic image space. Our goal is
to optimize the design of mechanisms by taking into account manufacturing errors or mechanical
wear.

The special example of a planar four-bar mechanism is worked out in detail in section 3.1.
Section 4 is devoted to case studies for composed four-bar mechanisms, in section 5 we extend
our considerations to slider-crank mechanisms.

1 Mapping of Plane Kinematics

A direct displacement D of the Euclidean plane transforms a frame Σ with respect to a fixed
frame Σ0. It is determined by three independent parameters (a, b, ϕ) – a and b determine the
translational part, ϕ fixes the angle of rotation. Points P (x, y) of Σ and P0(X, Y ) of Σ0 are
given by Cartesian and corresponding homogenous coordinates (x̄ : ȳ : z̄) = (x : y : 1) and
(X̄ : Ȳ : Z̄) = (X : Y : 1), respectively. Then we have D : Σ → Σ0 with





X̄
Ȳ
Z̄



 =





cos(ϕ) − sin(ϕ) a
sin(ϕ) cos(ϕ) b

0 0 1









x̄
ȳ
z̄



 . (1)

The kinematic mapping κ : SE(2) → P3 maps the direct displacement D(a, b, ϕ) to a point
κ(D) of a real projective 3-space P3, see Blaschke (1960) and Bottema and Roth (1990). Points
of P3 are given in homogenous coordinates (X1 : X2 : X3 : X4), where κ(D) is defined as

(X1 : X2 : X3 : X4) = (a sin(ϕ/2) − b cos(ϕ/2) : a cos(ϕ/2) + b sin(ϕ/2) : 2 sin(ϕ/2) : 2 cos(ϕ/2))
(2)

The points of the straight line u(X3 = X4 = 0) are no images of displacements. Therefore the
image space of κ is restricted to the part Q3 := P3 − {P ∈ u}. The kinematic mapping κ is a
bijective mapping of the direct Euclidean displacements SE(2) to the points of Q3.

Changes of the Cartesian frames in Σ and Σ0 change the image points κ(D) – this way the
image space gets the structure of a quasielliptic space with the real absolute line u – see Blaschke
(1960). The quasielliptic differential geometry is developed by Stachel (1970).

The quasielliptic planes through u are called “horizontal” planes. The metric induced in
these planes is a Euclidean one (with u at infinity). Therefore it is quite natural to use an
auxiliary Euclidean 3-space to visualize the properties of Q3. In these cases we will normalize
the coordinates by X4 = 1 (if possible).

Now we start with a point P ∈ Q3: If we eliminate a, b, ϕ from (1) and (2) we are able to
express the action of κ−1(P ) by





X̄
Ȳ
Z̄



 =





(X2
4 − X2

3 ) −2X3X4 2(X1X3 + X2X4)
2X3X4 (X2

4 − X2
3 ) 2(X2X3 − X1X4)

0 0 (X2
4 + X2
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x̄
ȳ
z̄



 (3)
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D = κ−1(P ) maps the point E(x̄ : ȳ : z̄) of Σ into E0(X̄ : Ȳ : Z̄) of Σ0.

Remark 1. All points P (X1 : X2 : X3 : X4) which belong to fixed points E(x̄ : ȳ : z̄) and
E0(X̄ : Ȳ : Z̄) are situated on the straight line through the two points P1(ȳZ̄ − z̄Ȳ : z̄X̄ − x̄Z̄ :
0 : 2z̄Z̄) and P2(z̄X̄ + x̄Z̄ : z̄Ȳ + ȳZ̄ : 2z̄Z̄ : 0). If we vary E0, these lines form an elliptic line
congruence LCE , which depend on the input data point E ∈ Σ. So E0 can be gained directly as
the image of the original point P under a (quadratic) projection γE : Q3 → Σ0. For more detail
see Bereis (1964).

1.1 Circular and linear constraints

Bottema and Roth (1990) and Husty (1996) have shown the kinematic image of the motion of
a fixed point E(x, y) in Σ that is constrained to move on a fixed circle k0 in Σ0 with radius r
centered on the Cartesian coordinates (MX , MY ) and having the equation

k0 . . . (X − MX)2 + (Y − MY )2 − r2 = 0 (4)

is an hyperboloid HM of one sheet with equation

(

X1 −
1

2
(−MY + y + X3(x + MX))

)2

+

(

X2 −
1

2
(MX − x + X3(y + MY ))

)2

=
1

4
r2(1 + X2

3 ).

(5)
In quasielliptic geometry this is a quadric of revolution. Its axis aM is the reciprocal polar of
the line u. It has the linear parametric representation





X1

X2

X3



 =
1

2





−MY + y
MX − x

0



 +
t

2





MX + x
MY + y

2



 by setting X3 = t. (6)

Remark 2. The hyperboloid axis aM does not depend on the radius r of the circle k0. The axis
aM itself belongs to r = 0 – the point E(x, y) in Σ remains fixed at (MX , MY ) in Σ0.

If the fixed point E(x, y) in Σ moves on a line l0 (fixed in Σ0) with the equation

l0 . . . AX + BY + C = 0, (7)

the kinematic images of the corresponding displacements are points of an hyperboloid of one
sheet again. It contains the absolute line u – in our auxiliary Euclidean description it is an
hyperbolic paraboloid HP :

−AX3
2x + Ax − 2 AX3 y + 2AX3 X1 + 2AX2 − 2 BX1 + By − ByX3

2+

2 BX3 x + 2BX3 X2 + C + CX3
2 = 0.

(8)

2 Unconstrained Joint Motion

This section describes the Positions Error workspace (all possible positions) of joints taking
clearances into account. We assume that the joint clearance is known. In this paper we look at
two types of joints: the revolute joint and the translational joint. The key point is to construct
a virtual mechanism with which the Pos-EWS is easier to describe.
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2.1 Joint clearance of a revolute joint

L1
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Figure 1: Revolute joint with clearance

Fig. (1a) shows a revolute joint with
joint clearance. Assuming a perfect
circular hole and pin (radii r0, r1),
the center L1 of the pin is allowed
to move in a circular region of ra-
dius ε1 = r0 − r1. This revolute joint
is equivalent to the virtual link Fig.
(1b). The radius ε1 of the virtual link
describes the possible motion of pin
center L1. So ε1 is the radius of joint
clearance of the link L1.

2.2 Unconstrained motion of a chain of revolute joints

- -

L0

ε1

L1

l1

l1

l2

ε2a=( )l1 - ε1- ε1

( )l1+ε1+ε1

(L  2)Β

L2

Figure 2: Pos-Error workspace of L2

Also the Pos-EWS of a chain of revolute joints
with clearance can be described. Fig. (2)
shows three virtual revolute joints connected
in series with the first joint L0 (is fixed). Let
ε1 and ε2 be the clearance of the joints L1 and
L2 and l0 and l1 the length of the legs. In Fig.
(2) we can see possible positions of the point
L2, which belongs to a ring B(L2) centered at
L1. It has the following range for its radius
r : (l1 − (ε1 + ε2)) ≤ r ≤ (l1 + (ε1 + ε2)), if
l1 ≥ (ε1 + ε2).

Remark 3. All possible locations of the point
L2 describe the same ring B(L2), if the virtual
hole in link L2 is not a circle but, for example,
an ellipse like the red curve in Fig. (2) with semimajor axis a = ε1. For the Pos-EWS B(L2)
only the maximum and the minimum distance from pin center L1 to the connected link hole of
L2 are important.

The ring B(L2) can also be created by a virtual prismatic joint with the limits of the length:
l : (l1 − (ε1 + ε2)) ≤ l ≤ (l1 + (ε1 + ε2)). In this way you can take as many revolute joints as
you like and connect them in series and the Pos-EWS of the centers Li are annular regions or
circular disks.

2.3 Joint clearance of a translational joint h1 h0

(a)

l1

L1

δ1

(b)

L1

l1

Figure 3: Translational joint with clear-
ance

Fig. (3a) shows a translational joint with joint clear-
ance. Assuming a perfect sliding block and a slide the
translational joint is equivalent to the virtual joint,
see Fig. (3b). All possible locations of L1 belong
to a strip; the thickness of the strip is δ1 = h0 − h1

(clearance between sliding block and slide).
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3 Error workspace analysis of planar four-bar mechanisms

In this section we want to study four-bar mechanisms with joint clearance. The joint clearance
of revolute joints are known and described in section 2.1.

3.1 Error workspace of a four-bar mechanism with joint clearance

Now we want to analyze the Pos-EWS and Ori-EWS of an arbitrary end-effector E of a four-bar
mechanism. All revolute joints have clearance and the radii of clearance are ε1, ε2, ε3 and ε4.
The base points A and B are fixed in the global frame Σ0. The coupler link (CD) is fixed
in the moving frame Σ, see Fig. (4c). Bottema and Roth (1990) have shown the kinematic
image of an ideal four-bar motion is the intersection curve d of two hyperboloids HD,HC , see
section 1.1. If all joints have clearance, the points D, C in Σ are no longer forced to move on
circles (A, l1) and (B, l3). They can move on rings defined by RD = (A, l1 ± (ε1 + ε2)) and
RC = (B, l2 ± (ε3 + ε4)), see section 2.2. The point D moves in the ring RD. The kinematic
mapping κ maps the corresponding (restricted) three-parametric motion of D to points of a solid
HRD

. The boundary of HRD
consists of two (quasielliptically) coaxial versions of the hyperboloid

HD (they belong to the radii l1 ± (ε1 + ε2)). They will be called H+

D and H−

D. For the point
C we have the same situation: The boundaries of the corresponding solid HRC

are coaxial
hyperboloids H+

C and H−

C , see Fig. (4a). The kinematic image of the possible displacements of
the end-effector of the four-bar-linkage (due to our restrictions) is therefore the intersection of
the two solids HRD

∩ HRC
. This solid is a certain “pipe” with spine curve HD ∩ HC bounded

by the four surfaces H+

C ,H−

C and H+

D,H−

D (Fig. (4b)).
The possible positions of an end-effector E ∈ Σ define the end-effector workspace WE (Pos-

EWS) in the fixed frame Σ0. Taking part 1 into consideration, we have WE = γE(HRD
∩HRC

).
Fig. (4c) displays this region for an example. The red curve is the coupler curve cE of E, which
belongs to the nominal model (without clearance).

Now we will have a look on the shape of the “pipe” HRD
∩ HRC

. The intersections (slices)
with the horizontal planes X3 = tan(ϕ

2
) belong to fixed angles ϕ. So the EWS with respect

to a fixed orientation of the point E can be determined, see Fig. (4d). In this way we can
describe the Ori-EWS. The planes X3 = tan(ϕ

2
) intersect the solids HRD

and HRC
into two

rings. The map γE maps them into two rings in Σ0. Their intersection defines the Pos-EWS for
the point E for the fixed angle ϕ. In Fig. (4b) we can see some cases of ring-ring intersections
which belong to the EWS. To study all cases of ring-ring intersections, it is useful to know the
accurate values of the coordinates of X3a, X3e of the ring-ring intersections where X3a starts and
X3e ends. With these coordinates X3a, X3e the ring-ring intersections can be classified. To find
these coordinates we have to solve the following two problems: The first problem refers to Fig.
(5a). The sum of the circle radii (rax + rbx) has to be equal to the distance of the circle centers
d(Ma, Mb). The centers Ma and Mb are points of the axis aA and aB of the solids HRD

and
HRC

. If the fixed points A and B have the Cartesian coordinates A(AX , AY ) and B(BX , BY )
in Σ0 and the points C and D (fixed in Σ) have the coordinates C(cx, cy) and D(dx, dy) in Σ
and by setting for example ra = l1 +(ε1 + ε2) and rb = l2 +(ε3 + ε4), the outer contacts of these
two (extreme) hyperboloids of the solids HRD

and HRC
can be found by solving the following

equation (see section 1.1).

ra

2

√

(1 + X2
3
) +

rb

2

√

(1 + X2
3
) = ‖MaMb‖. (9)
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Figure 4: a) and b) Intersection of two solids c) Pos-EWS d) Pos-EWS with orientation
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Figure 5: a) and b) outer and inner contact of two hyperboloids c) ring-ring intersections

In a next step we square eq.(9):

(

ra

2

√

(1 + X2
3
) +

rb

2

√

(1 + X2
3
)

)2

= ‖MaMb‖
2. (10)

Evaluation of eq.(10) gives an equation, which is in X3 an algebraic expression of order two. So
the coordinates X3a and X3e for the outer contacts can be determined accurately . The second
problem refers to Fig. (5b). The equation of the inner contacts of two hyperboloids is also of
order two, equation (11) is of similar difficulty as the first problem.

ra

2

√

(1 + X2
3
) −

rb

2

√

(1 + X2
3
) = ‖MaMb‖, if ra ≥ rb. (11)

With these results it is easy to analyze the EWS for an arbitrary orientation. Furthermore, now
it makes sense to define 13 cases of ring-ring intersections, see in Fig. (5c). Note, some cases are
only for big clearance possible. In Fig. (4b) we display the four cases of ring-ring intersections
which belong to our four-bar mechanism.

Remark 4. If the image curve (see the red curve of Fig. (4b)) of the nominal four-bar motion
has points E1, E2 with horizontal tangents t1, t2, these two points belong to two instantaneous
translations. For these orientations leg l1 and leg l2 are parallel. And if this nominal mechanism
has joint clearance the horizontal planes generally intersect the EWS ∈ P3 “close” to the points
E1 and E2 in local large areas (see the orange Pos-EWS in Fig(4)).

In order to describe the boundary of the Pos-EWS we use the definition of contour and
silhouette of a surface Φ with respect to a γE-image.

Definition 1. The contour c(Φ) of a surface Φ with respect to the projection γE is the set of
all points X ∈ Φ which tangent planes at X contain lines of the congruence LCE . The image
γE(c(Φ)) is the silhouette s(Φ) of Φ with respect to γE .

As stated before, the EWS of a point E ∈ Σ is given by WE = γE(HRD
∩ HRC

). The
boundary of this region consists of same parts: They either belong to the γE− images of the
four intersecting curves of the boundary surfaces H+

D,H−

D with H+

C and H−

C or are parts of the
silhouettes (with respect to γE) of these four surfaces.
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Remark 5. The surface Φ is a called Clifford-cylinder. There exist two one-parametric groups
of quasielliptic translations which keep Φ invariant. Its point paths on Φ are the two series
of generators. One of these groups of translations keeps the net γE invariant. Therefore the
contour of Φ with respect to γE has to consist of such generators. As the silhouette of Φ consists
of two concentric circles. For example for H+

D the two circles have the radii rso = ‖DE‖ + ra

and rsi = ‖DE‖ − ra. The real part of the contour (as its preimage) splits into two generators
on Φ.

The boundary of the EWS of a point E consists of parts of the γE-images of the four in-
tersecting curves of H+

D,H−

D with H+

C and H−

C and some parts of circles, which are gained as
silhouettes of the surfaces H+

C ,H−

C ,H+

D,H−

D. The intersection points of the generators and the
EWS can also be found accurately because these points are the intersection points of a line
and of an hyperboloid. So we can determine the boundary of the Pos-EWS analytically. The
determination of the EWS also works, if the joint clearance increases.

3.2 Error workspace of replacement mechanisms

In this subsection we want to look at the Pos-EWS of the two replacement mechanisms for the
given four-bar mechanism (A, B, C, D) in Fig. (4). Fig. (6a) shows all three mechanisms which
describe the same coupler curve c for the end-effector E (their orientations are different). But
what happens if all joints have the same radii of clearance? The results are shown in Fig. (6b)
and Fig. (6c). All three nominal mechanisms describe the same coupler curve c, but we can see

c
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Figure 6: Pos-Error workspaces of replacement mechanisms

the Pos-EWSs are different. The part of the interest on the coupler curve could influence the
choice of a qualified replacement mechanism.

3.3 Folding four-bar mechanism

The coupler curve c of an end-effector E can have two different branches which are strictly
separated, see Fig. (7a). Due to the joint clearance, it could be possible that these separated
branches can be reached without destroying the mechanism see Fig. (7c). These mechanisms
are folding mechanisms due to joint clearance. For such a mechanism it is interesting to find the
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Figure 7: Pos-Error workspaces of an folding four-bar mechanism

value of clearance so that the mechanism becomes a folding mechanism: We add clearance to the
leg lengths and apply the conditions for “folding four-bars”, see Wunderlich (1968) and Bottema
and Roth (1990). In our concept these belong to the double solution of the inner contact of
eq.(11) of the hyperboloids H+

C ,H−

D or of the hyperboloids H+

D,H−

C . One case is worked out
here. Fig. (7) shows an example – (7a) displays the situation without clearance. Then the
clearance increases. Part (7b) shows a “folding case” situation, which is crossed in part (7c).

4 Error workspace of multi loop mechanisms

In this section we want to study the EWS of two multi loop mechanisms with revolute joints.

4.1 Double-rocker four-bar mechanism
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Figure 8: Pos-Error workspace of a Double-rocker four-bar mechanism with driving crank
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Fig. (8a) shows a four-bar mechanism ABCD with driving crank link l4. This mechanism
has two closed loops. In a first step we want to analyze the EWS of E when the mechanism
has joint clearance with radii ε1, ε2, ε3, ε4, ε5 and ε6, see Fig. (8a). We can see in Fig. (8b) the
whole Pos-EWS of the four-bar mechanism (A, B, C, D, E) which is separated into two areas
EW1 and EW2 due to the driving crank l4. We can see some disconnected curves in EW1 and
EW2. One of them is the red coupler curve of the nominal mechanism in EW2. If the nominal
end-effector E is designed to follow the path in EW2, the mechanism will have a folding position
due to joint clearance. The boundary of the EWS EW1 and EW2 can be found analytically.

4.2 Film pull-down mechanism

Fig. (9) shows a film pull-down mechanism with joint clearance. The end-effector E is designed
to follow the red path c. Now we want to study the unconstrained motion of the moving frame
Σ = [H, F, E] by taking into account joint clearance with radii ε1, ε2, ε3, ε4, ε5 and ε6. The
unconstrained motion of Σ could be described as follows: The origin O of Σ has to move on the
Pos-EWS of the four-bar mechanism (A, B, C, D) with end-effector H and the point F (fixed in
Σ) has to follow a ring with center G (fixed in Σ0).
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Figure 9: Error workspace of a film pull-down mechanism

Now we study the motion of our new frame Σ: The Pos-EWS of H with respect to the four-bar
motion has a boundary b0. If O (now fixed in Σ) moves on this boundary b0, the kinematic
image of this motion is a ruled surface. Their generators are described in remark (1) or in remark
(2). So we have a parametrization of this ruled surface. Because of joint clearance the point F
moves on a ring. The corresponding kinematic image is a solid bounded by two hyperboloids
of rotation. The kinematic image of the motion of the frame Σ is the intersection of these
two solids. The boundary of this intersection, see Fig. (9b) can be given in parametric form
because one of the solid is bound by two coaxial hyperboloids. The EWS can be separated into
several parts, see Fig. (9b). The film pull-down in Fig. (9a) has a folding position due to joint
clearance. In Fig. (9c) we can see the connection of two paths of the end-effector E although
the end-effector E is designed only to follow one path c, see Fig. (9a). Due to the design of this
mechanism, only one part of the EWS in the image space is interesting. The mapping γE of
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this EWS is the Pos-EWS of E. This Pos-EWS is bound by the mapping γE of the intersection
curves and of the corresponding silhouettes. Some parts of these silhouettes can only be found
numerically.

5 Error workspace of a slider-crank mechanism
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Figure 10: Error workspace of a slider-crank mechanism

Similar as in section (3.1) we get the EWS of a slider-crank mechanism. Fig. (10) shows a
slider-crank mechanism with joint clearance. The revolute joints have the radii of clearance ε1

and ε2 and the transmission joint has a strip of clearance δ3. The coupler link (CD) is fixed in
the moving frame Σ. The kinematic image of Σ that D moves on the ring RD and C moves on
a strip is the intersection of two solids which are bound by two coaxial hyperboloids and two
hyperbolic paraboloids. The silhouette of an hyperbolic paraboloid consists of two lines. They
are parallel to the translational axis. The contour of an hyperbolic paraboloid consists of two
generators meeting the absolute line u, see remark (5). Parallel planes (X3 = const) intersect
the solids in one ring and in one strip. We can define some classes of ring-strip intersections and
similar as in section(3.1), we can accurately determine the contact points. The Pos-EWS of the
end-effector E in Fig. (10c) is determined analytically. The red curve in Fig. (10c) is the path
of E if the mechanism is ideal.

6 Conclusion

Assuming perfect joint clearance we showed that the Error Error workspace of some planar
mechanisms can be described analytically. For studying the Error workspace the kinematic image
space was used. We classified the EWS of a four-bar mechanism and of a slider-crank mechanism.
We compared the Pos-EWS of a four-bar mechanism with its replacement mechanisms and
studied folding four-bar mechanisms due to joint clearance. Then we extended the considerations
to further planar mechanisms. The determination of the EWS also works, if the joint clearance
increases.
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