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Abstract. The conditions for two GC*-continous
(n,n)-Bézier-Patches with common link curve are well
known and give a 3-parametric variety of solutions. In
order to gain more freedom of design we suggest to link
an (n,n)- and an (n + k,n)-Patch. We give a construc-
tive and algorithmic way to find all solutions in the ge-

neral case.

1. The problem. Given the shift operator representa-
tions? of integral (n,m) and (n + k, ) Bézier-Patches
in an affine 3-space

x(u,v) = (1—u +uE) (1 -v+vF)™ b
Y(4,v) = (1-u+uE)"**(1—v+oF)™ cop
(u,v) € [0,1] x [0,1]
(1)

with an arbitrary integer ¥ > 0 and with the common

curve
l...v=0 x(u,0) = y(u,0) for all u e R.

Thus we have

(I—u+u) (1—utuE)"boy = (1—u+uE)"* ey

The points of the 0-tread are gained by elevation of de-
gree (see HOSCHEK, J./LASSER, D. [5], p. 131). We

In the usual way we apply the operators E, F, such that
Ekbo‘o = bk'o and Elbo'o = bO,l-
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want to investigale, under which conditions the patch
¥ is a GC'-continuation of ® along the border curve
[...v =0 (i.e. ® and ¥ are tangent along I). The

partial derivative vectors to be regarded are

Xu(2,0) = n(1—u+uE)" ! (E—1) by,
Xo(4,0) = m(1—u+uE)* (F—1) bgy,
Yo(u,0) = 7 (1—u+uE)"* (F—1) cgpo.

For abbreviation we write (see fig. 1):

Ei(E —1)bog = bjse—bjo
EJ(F - l)bo'o = bj,l . b;i,O
Ei(F —1)cop = Cj1 — Cjo

aj;, j=0,...
b;, j=0,..
¢, 7=0,..

Then we have Eag = aj, E’by = b;, Eicy = c;.

Fig. 1

(2)

n—1
.n
n+k.

(3)

The vectors ¢; (j =0,...,n+k) determine the 1-thread

of the control net (c;;) (see fig. 1): ¢;1 = cjo + ¢; for

7=0,...n+k.



The characteristic condition is
det[xu(u, 0), x,(x, 0), yu(x, 0)] =0,

which means:

det[(1 —u +uBE)*! a,,
(1 — U + 'U,E)” bo, (4)
(1-—u+uE)*t* ¢ = 0.

Equation (4) is a polynomial in the variable u of
degree 3n + k — 1, which has to vanish for all u €
R. Comparison of coefficients yields 3n + k conditions
for the 3(n + k + 1) coefficients of the unknown vectors
Co, - - - Cntk. This is a system of linear homogenous

equations. Thus we have:

Theorem 1. In the general case the problem of fin-
ding vectors c¢; (j = 0,...n + k) of the control net of a
GC'-continuation surface ¥ yields a 2k + 3-dimensional

variety as solution.

In fact the system of equations found above may in spe-
cial cases be dependent; as a consequence the dimension
of the solution variety still increases. For small integers
n it may be possible to write down the conditions, under

which that may happen.
We notice, that the problem in the case k = 0 still leads

to a 3-dimensional solution, which is well known. (c.f.
FARIN, G. [3], HOSGHEK, J./LASSER, D. [6], WAssuM,
P. [15]; for further references see [6]). For the special
cases n = 3, k = 2 see HosAKA, M./KIMURA, F. [4],
[5]. |

Degree elevation of the solution k = 0 does not change
the variety of solution. But for some applications a
greater variety of solutions may be of interest even
in the general case. This is why we suggest to put k > 0.

2. A fundamental system of solutions. For prac-
tical use it is important to know a fundamental system
of solutions for the general case. Hence other solu-
tions can be constructed by linear combination.
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Fig. 2

Figure 2 illustrates that for the case k = 0.

In order to realize a GC'-continuation as described, the
- user still has to choose 3 constant real numbers po, 1, vo,
such that for any j € {0,...n} the vector c; is composed

by
¢; = po ¢5(0) + p1 ¢j(1) + vo €;(0) (22)



Fig.- 3

Figure 3 illustrates the fundamental solutions po = 1.5,
1 =vy=0and po =0, gy = —1.5, vy = 0. They
are singular ones. Only the choice of vy # 0 would give

nonsingular solutions.

With the help of the recursion formulas (13), (13), (15),
and (16) we now treat with case k = 1, which already
yields dimension 5 for the solution of the GC? continua-
tion problem. .

We apply (13), (14), (15), and (16) to the vectors c;(0, 0)
and c¢;(0,0), respectively:

cj(A,1) = 2El=i () 0) A=0,1,

n+2 23

Cj(A,l) = ﬁ Cj_l(A—l,O) /\=1,2. ( )

&(0,1) = =53 %(0,0) (24)
(L1 = Z §-(0,0).
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For n = 3 we get:

c;(0,1) = %1 ¢;(0,0) §=0,1,2,3

c;(1,1) = %24 ¢4(1,0) §=0,1,2,3

ci(1,1) =% ¢;—4(0,0) j=1,2,3,4
i ¢;(1,00) j=1,2,3,4 (25)

¢;(0,1) =4 §;(0,0) 7=0,1,2,3
i §.(0,00 j=0,1,2,3

Fig. 4

Fig. 4 shows an example of a pair of Bézier-Patches, one
being a GC'-continuation of the other one in the case
k = 1. There we put po =0, py = 3, ps = 0.3, yp =
=1y =1 according to (18).
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