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ABSTRACT: We consider one of the Fulleroid-like mechanisms described by G. KIPER [2] and K. 
WOHLHART [8]. Due to the generation of this mechanism G. KIPER and K.WOHLHART worked 
out a highly symmetric one-parametric self-motion )t(0  of the mechanism and displayed some 

of the states of this motion. This mechanism consists of 24 rigid bodies linked via 24 rotational 
linkages (socalled 1R-joints) and 12 linkages, each consisting of 2 orthogonally intersecting 
rotational axes (socalled spherical 2R-joints). For the Fulleroid-like mechanism the theoretical 
degree of freedom takes on the value F = -30. As it admits the self-motion )t(0  it is an example 

of an overconstrained mechanism and as such of high interest. But surprisingly, a physical model of 
this highly over-constrained mechanism seems to admit more possible self-motions than )t(0 ! In 

this paper we elucidate this fact and give a complete list of the possible non-trivial self-motions of 
this mechanism: We will demonstrate that in general there are 4 different one-parametric non-trivial 
self-motions of this mechanism: The described motion )t(0 and 3 further motions  )t(1 , )t(2  

and )t(3 . They share common singular positions where bifurcations are possible. These singular 

positions will also be described in the paper.  

Keywords: Kinematics, Robotics, Fulleroid-like-mechanisms, Overconstrained Mechanisms, 
Self-Motions. 
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1. INTRODUCTION 
We start with one of the Fulleroid-like 
mechanisms described by G. KIPER [2] and 
K. WOHLHART [8] (displayed in figure 1). 
It belongs to a class of interesting 
overconstrained mechanisms described by 
several authors (e.g. H. STACHEL [6], [7], K. 
WOHLHART [8], [9], G. KIPER [1], [2] and 
the author [3], [4], [5]). This particular 
example consists of six congruent parallel 
four-bars in the faces of a cube which are 
interlinked by spherical 2R-joints (at fixed 
angle of 90 degrees). Due to the generation of 
this mechanism G. KIPER and 
K.WOHLHART worked out a highly 
symmetric one-parametric self-motion )t(0  

of the mechanism and displayed some of the 
states of this motion.  

 

Figure 1: The basic 
Fulleroid-Like-Mechanism. 

It consists of 24 rigid bodies linked via 24 
rotational linkages (socalled 1R-joints) and 12 
linkages, each consisting of 2 orthogonally 



 

 

 
intersecting rotational axes (socalled spherical 
2R-joints). The theoretical degree of freedom 
F of such a linkage is determined via the 
GRÜBLER-KUTZBACH formula. It counts  
number of theoretical restrictions of the 
mechanism with respect to the number of 
rigid bodies. For the Fulleroid-like 
mechanism it takes on the value F = -30. As it 

admits at least )t(0  it is an example of an 
overconstrained mechanism. In the following 
we will determine all non-trivial self-motions 
of this mechanism.  
 
The paper is structured as follows: Section 2 
is devoted to the study of some properties of 
planar parallel four-bars which are used in 
chapter 3. We provide the conditions for 
movability. Section 4 lists the possible 
non-trivial self-motions of the physical model 
presented in figure 1. These self-motions are 
displayed by point paths of a characteristic 
point. A conclusion will round off the paper.   
 
2. THE SPECIAL PLANAR PARALLEL 
4-BAR MOTION 
As the mechanism consists of interlinked 
4-bars, we start our considerations with a 
parallel 4-bar with equal side lengths and 
congruent offsets built of isosceles triangles. 
We use a Cartesian frame  and 
the notations of figure 2. We parametrize the 
paths of the 
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with ).,[t},{   0 This special 
four-bar can run in two different ways: a 
parallel mode described above and an 
anti-parallel mode. As the physical model 
stays in one of these modes, we will restrict 
our considerations to the parallel four-bar 
described in (1). 
 

Depending upon the choice of   the points 

 will form a rectangle (for)t(Bi 1  it is a 

square) with side lengths depending on t. Its 
side lengths are 
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Figure 2: The basic symmetric planar 

parallel 4-bar. 
Remarks: 
1. For all ),[t   the configurations 

 and )t(Bi )t(Bi  are congruent via a 

rotation with center O. 
2. The configurations for t and fixed  are 
congruent to those for t  and  . 
This allows us to restrict our considerations to 

)/,/[t 22    and .  
3. The lengths and from (2)  
interchange if we substitute t by 

)t(l1 )t(l2

/ t2 . 
point. A conclusion will round off the paper.   
 
3. THE LINKED PARALLEL 4-BARS 
The Fulleroid-like structure is based on 
interlinked 4-bars. These 4-bars are 
positioned in 6 planes (pairwise orthogonal). 
They form a box with right angles at any 
possible position of the mechanism. We will 
use a global Cartesian frame  
associated with 

}z,y,x;O{

the box, 2a, 2b, 2c being its dimensions 
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in the x, y and z direction. Figure 3 exhibits 
the situation.      
The 4-bars in parallel (opposite) faces of the 
box are congruent in any position. A rotation 
through 180° about one of the two coordinate 
axes parallel to the corresponding face 
transforms them into each other.  

 

Figure 3: Schematic sketch of the box and the 
planar parallel 4-bars with 2 . 

 
For that reason it is sufficient to parametrize 3 
(non-parallel) 4-bars by rotational angles t, t*, 
t** (in the planes ax,cz   and  

 - see figure 3). by 
We have  and 

 with suitable values x, y, z 
.  
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As we saw before the points  belong to a 

rectangle (with size depending on t). These 
points have the same (but not constant) 
distance from the center of the box. The same 
holds for the other facets of the box. So the 
linkage points on the edges of the box have to 
be situated on a sphere centered in the center 

of the box. With denoting its radius, 
we have the following 3 conditions 
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Due to equation (2) and the denotations of 
figure 3 we have 
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Self-motions of the mechanism belong to 
solutions of (3), (4) and (5) for the variables a, 
b, c, x, y, z, t, t*, t** and   all depending on 
at least one parameter. It is easy to compute a, 
b, c, x, y, z (depending of  , t, t*, t**) from 
these equations:  
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Short computation yields   depending on t, 
t*, t**  given by 
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and the following two equations interlinking t, 
t*, t**:  
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As we have 2 equations for the 3 parameters t, 
t*, t** we can expect at least one-parametric 
mobility of the mechanism. Further on we 
work out the different options for 
self-motions determined by (8). 
 
4. PARAMETRISATIONS OF THE 
MECHANISM’S SELF-MOTIONS 
We substitute u := tan t, u* := tan t* and 
u** := tan t** in formula (8), use the 
abbreviation 
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and get the two equations 
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The solutions of these equations belong to 
one of the following 4 cases: 
 
Case A: u = u* = u** 
Case B: u* = u** u and   0)u*,u*,u(C
Case C: u =u** u* and .  0)u*,u,u(C
Case D: u u** and u* u**, but 

0)u*,*u*,u(C  and . 0*)*u*,u,u(C
 
We study the 4 cases in detail: 
 
Case A gives the very symmetric self-motion 
of the mechanism which was already 
considered by K. WOHLHART [8] and G. 
KIPER [2].  
 
Case B: u* = u**. The second condition 

 allows to compute  0)u*,u*,u(C
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with the abbreviations 
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In the parameter space {u,u*,u**} this curve 
describes a rational quartic curve in the plane 
[u*,u**].    
 
Case C: u = u** and  yield a 
case symmetric to case B. We get 

0)u*,u,u(C
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with A(u) and B(u) from (10). 
 
Case D: u  u** and u* u**, but 

0)u*,*u*,u(C  and . 0u*,u,u(C *)*
These two equations are linear in u** and 
symmetric with respect to u and u*. They can 
be solved directly, yielding the following 
solutions: 

Case D1: u = u*. This case is similar to the 
cases B and C. We get 

)u(B

)u(A
**u                        (14)  

with A(u) and B(u) from (12). 
 
Case D2: u u*. A careful discussion of the 
different cases gets us to the following result: 
In case D2 there are no real solutions for 
self-motions. 
 
We can sum up:  
 
Theorem 1: The non-trivial self-motions of 
the Fulleroid-like-mechanism belong to two 
different types: The first type can be 
parametrized by u=u*=u**, the second by 
u=u* and u** = A(u)/B(u). Cyclic 
permutation of {u,u*,u**} yield 2 further 
self-motions congruent to the second one. 
They parametrize rational planar quartic 
curves.  
 
All the 4 curves representing the 4 different 
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self-motions of the mechanism share joint 
positions which are given by 

}/,,,{u  111  . Figure 4 illustrates 
the different options in the (u, u*, u**)-space 
which can be viewed as a parameter space of 
the motions. For the example we used the 
dimensions of figure 3 ( 2 ). All 4 
one-parametric self-motions have the 4 
common positions for },/{ 121,, 12 u  
denoted by small spheres. They are singular 
positions of the mechanism. This is, where 
bifurcations are possible. 
 

 

Figure 4: The self-motions for 2  
displayed as curves in the parameter space – 

different colors represent different 
self-motions. 

The s ecial case 12  arkable: 
We have only two singular positions, each of 

them being counted twice. For 12   we 
have eal singular positions of the 
mechanism. We sum up:  

p is indeed rem

 4 r

 

 
Theorem 2: The Fulleroid-like-mechanism in 
general has 4 different singular positions in 
the space of the parameters {u,u*,u**}.  At 
all these positions the mechanism can branch 
into any of the 4 different one-parametric 
self-motions of theorem 1.  
 
5. CHARACTERISTIC POINT PATHS 

UNDER THE SELF-MOTIONS OF THE 
MECHANISM 
We will visualize the different self-motions 
by characteristic point paths in the 
world-coordinates of chapter 3. 
Representative points are the centers of the 
2R-linkages (the points  of figure 3). 

These 12 points are situated on the edges of 
the box. As stated before, the point paths to 
these points on parallel edges of the box are 
congruent. Therefore one self-motion will 
generate up to 3 different characteristic point 
paths. It will be sufficient to study the point 
paths of the 3 points .  

iB
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Figure 5: The point path of the point 
 under the self-motions of type A. )c,y,a(B1

 
Again we have to discuss the 4 different 
cases:  
 
Case A: u = u* = u**. As we assumed 

)/,/[**t*,t,t 22   we have t = t* = t**. 
The point paths to all characteristic points are 
congruent. Formulae (6) and (7) then yield 
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The path of the characteristic point 
is displayed in figure 5 for )c,y,a(B1 2 . 

We get two ellipses (belonging to the 
different signs in (15) – the one belonging to 
the lower sign is illustrated in grey color). 
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The bifurcation points are represented by 
small spheres again. 
 

 

Figure 6: The point path of the point  
under the self-motions of type D. 

1B

 
The 3 Cases B-D deliver congruent 
self-motions. Their description is gained by 
from one by careful permutation of the 
coordinates and the parameters. The 12 
characteristic points define 3 quadruples 
(stemming from parallel edges of the box) – 
each of it delivering congruent point paths. As 
representative we can consider the points 

 (see figure 3) and their paths. 

These paths generated by one of these 
self-motions are congruent to those of these 3 
points under the other self-motions, but in 

different ordering of the triple . 

We start our discussions with   
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121
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Case D: We have u=u*. Formulae (6) and (7) 
then yield 
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The parameters t and t** are interlinked via 
formula (14) with u = tan t, u** = tan t**. 
The point path of the point  is planar. It 
consists of two algebraic curves (belonging to 

the 2 different solutions for 

1B

 ). Figure 6 
illustrates this situation for 2 . 

The point paths of the point  under the 
self-motions of type A and D are coplanar and 
are tangent or intersect. The singular positions 
are denoted by small spheres. One curve of 
each type (the upper sign in formulae (15) and 
(16)) yield figure 7. 
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Figure 7: One part of the point paths of  
under the self-motions of type A and D. 
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Cases B and C: We either have u*=u** or 
u** = u. Permutations of {a,b,c}, {x,y,z} and 
{t,t*,t**} yield parametrisations to the point 
path of . For Case B we have 1B

(tan *)t(tanB/*)tAuttan   and get  
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Case C with u=u** and 

(tanB/)t(tanA*u*ttan   yields 
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So these point paths of Case B and Case C  
are congruent (reflection in the plane x+z=0). 
Figure 8 shows the characteristic point paths 
for Case B (again for 2 ). The path 
consists of 4 algebraic curves. 
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Figure 8: The point path of the point  
under the self-motions of Cases B and C 
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We sum up: 
 
Theorem 3: The Fulleroid-like-mechanism in 
general admits 4 different one-parametric 
self-motions. The paths of the 12 
characteristic points are algebraic curves. In 
case A they are congruent and parts of 
ellipses. In the case B there are 3 prototypes 
of algebraic curves for the characteristic 
point-paths of , respectively. 
Curves congruent to the same prototypes 
occur in the cases C and D. However, the 3 
points  change their paths in a 
cyclic way. 

*B,B,B 121

*B,B,B 121

 
6. CONCLUSION 
The paper has been dedicated to the study of 
self-motions of a Fulleroid-Like-Mechanism 
and the conditions for its movability. These 
self-motions have been illustrated by the 
different point paths of a characteristic point. 

REFERENCES  
[1] Kiper, G., Sylemez, E. and Kisisel, A.U. A 

family of developable Polygons and 

polyhedra. Mechanisms and Machine 
Theory, 43 (5), 627 – 640 (2008). 

[2] Kiper, G. Fulleroid-Like Linkages. 
Proceedings of EUCOMES 08 (M. 
Ceccarelli edt.), 423-430 (2008). 

[3] Roeschel, O. Zwanglauefig bewegliche 
Polyedermodelle I. Math. Pann. 6/1, 267 – 
284 (1995).  

[4] Roeschel, O. Zwanglauefig bewegliche 
Polyedermodelle II. Studia Sci. Math. 
Hung. 32, 383 - 393 (1996). 

[5] Roeschel, O. Zwanglauefig bewegliche 
Polyedermodelle III. Math. Pann. 12/1, 55 
- 68 (2001). 

[6] Stachel, H. The HEUREKA-Polyhedron. 
Proceedings of Coll. Math. Soc. J. Bolyai, 
447 – 459 (1991). 

[7] Stachel, H. Zwei bemerkenswerte 
bewegliche Strukturen. Journ. of Geom. 
43, 14 – 21 (1992). 

[8] Wohlhart, K. Kinematics and Dynamics of 
the Fulleroid. Multibody System 
Dynamics, Vol.1, 241-258 (1997). 

[9] Wohlhart, K. New Regular Polyhedral 
Linkages. Proceedings of 8th IFToMM 
Intern. Symposion on Theory of Machines 
and Mechanisms, Bucharest, Romania, 
Vol II, 365-370 (2001). 

ABOUT THE AUTHOR 

Otto Roeschel, Dr., is Professor for geometry 
at the Institute for Geometry at the University 
of Technology in Graz, Austria. His research 
interests are Kinematic Geometry and 
Classical Differential Geometry. He can be 
contacted by e-mail: roeschel@tugraz.at or 
via: TU Graz, Institute of Geometry, 
Kopernikusgasse 24, A-8010 Graz, Austria. 

 


