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ABSTRACT: On a sheet of paper we consider a curve c∗(s). ’Curved paper folding’ (or ’curved
Origami’) along c∗(s) folded from the planar sheet yields a (spatial) curve c(s) and two developable
strips Φ1,2 through that curve. We examine the very special case of a configuration where the two
surfaces Φ1,2 are cylinders with generators given by direction vectors e1,2. Such a triple (e1,e2,c(s))
will be termed triple for curved folding with cylinders (CFC-triple).
In this paper we prove the following properties and statements on CFC-triples: (a) The spherical image
c′(s) of the tangent vectors of c(s) is, in general, contained in a spherical conic with two of its foci in
the directions of e1 and e2. (b) Any curve c(s) of this triplet is affinely related to a curve of constant
slope.
The results are also transferred to the discrete case where c(s) is replaced by a spatial polygon while
the cylinders turn into prisms.
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1. INTRODUCTION

We consider a planar curve c∗(s) ∈ C2

parametrized by its arc-length s∈ I ⊂R. ’Curved
paper folding’ (or ’curved Origami’) along c∗(s)
yields a (spatial) curve c(s) and two developable
strips Φ1,2 through that curve which, in turn,
forms a sharp crease on this object. Curved
Origami was studied by several authors in the
last few years - see [2], [3], [4], [7], [8] and the
literature cited there. We study the special case
where the two surfaces Φ1,2 are cylinders. The
generators of the two cylinders through c(s) be
given by the two direction vectors e1,2.

In terms of differential geometry this proce-
dure can be interpreted as follows: Whenever we
roll out the two cylinders Φ1,2 into a plane π we
think of two isometries γi of Φi into π . Addition-
ally, we get two direction vectors e∗1,2 = γi(ei) par-
allel to π and two curves c∗1,2(s) = γi(c(s)) ⊂ π

which are related in a direct isometry β including
the parameterizations: β (c∗2(s)) = c∗1(s)∀s ∈ I.

In order to facilitate that, the spatial curve c(s)
must have the same geodesic curvature κg,1(s) =
±κg,2(s) on the two cylinders Φ1 and Φ2.

In this paper we characterize triples
(e1,e2,c(s)) each consisting of two direc-
tion vectors e1,e2 and a spatial curve c(s)
such that c(s) has the same geodesic curvature
κg,1(s) = ±κg,2(s) with respect to the two
cylinders Φ1,2 with generators parallel to e1,2.
Such a triple will be termed triple for curved
folding with cylinders (CFC-triple). In Chapter
2 we determine the geodesic curvature of c(s)
with respect to a cylinder, chapter 3 contains
the characterisation of CFC-triples. In Chapter
4 we study the possibility of the existence of a
continous motion describing the Origami folding
of the spatial arrangement of the two cylinders
into the planar configuration. Chapter 5 is
devoted to the discrete version of these results.



2. SPATIAL CURVES ON CYLINDERS
We start with a spatial curve c(s) ∈ C3

parametrized by its arc length s ∈ I ⊂ R.1 The
corresponding FRENET-frame is denoted by
{t,h,b}. Additionally we are given two unit vec-
tors e1,2 which, together with c, define two cylin-
ders f1,2(s,v) := c(s)+ve1,2, (s,v) ∈ I×J ⊂R2.
We assume that {ei,c′} are linearly independent
for general s ∈ I.

We determine the geodesic curvature κg,i of the
curve c with respect to the cylinder fi (i = 1,2).
The unit vector ni := c′×ei/‖c′× ei‖ is orthogo-
nal to the tangent plane of fi. Together with the
unit side vector si := c′×ni we have defined an
orthonormal frame {c′,ni,si} associated with the
curve and the corresponding cylinder. In order to
determine the geodesic curvature κg,i of c with
respect to the cylinder fi we split the vector c′′
into a tangential component c′′t,i parallel to [c′,si]
and a normal component c′′n,i parallel to ni - see
[1] or [5]. We get

c′′t,i = si 〈si,c′′〉=−si 〈c′′,ei〉/‖c′× ei‖
and c′′n,i = 〈ni,c′′〉 ni.

(1)

Therefore the geodesic curvature κg,i with respect
to the cylinder fi is given by

κg,i =−
〈
c′′,ei

〉
/
∥∥c′× ei

∥∥ . (2)

We put φi(s) := ∠(c′(s),ei) and get cosφi =
〈c′,ei〉 and sinφi = ‖c′× ei‖. In the case of cylin-
ders differentiation yields 〈c′′,ei〉 = −φ ′i sinφi
and therefore

κg,i(s) = φ
′
i (s). (3)

3. CURVES WITH THE SAME GEODESIC
CURVATURE ON TWO CYLINDERS

In this section we will characterize space curves
c(s) having the same geodesic curvature κg,i(s)
with respect to the two cylinders f1 and f2 in each
of its points.

1Derivatives with respect to arc length s of c will be
denoted by primes.
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Figure 1: The spherical conic k containing c′(s) -
real foci e1,2, two vertices in v1,2.

Remark: Our special case has also the follow-
ing interpretation: If we roll out the two cylinders
into one plane π the corresponding isometries
γ1,2 of f1,2 −→ π map the curve c(s) to curves
γ1,2(c) that are congruent by a planar isometry β .
The geodesic curvature κg,i = φ ′i is the curvature
of the planar curves γ1,2(c). Parts of our spatial
configuration thus can be viewed as generated by
curved folding of a planar piece of paper (’curved
Origami’) with γ1(c(s)) = γ2(c(s)) := c∗(s) as
the common curve. This special case is char-
acterized by2 κg,1(s) ≡ ±κg,2(s) ∀s ∈ I. The
curve c(s) together with the generators e1,2 of the
two cylinders forms a triple for curved folding
with cylinders (CFC-triple) exactly in the cases
κg,1(s)≡±κg,2(s) ∀s ∈ I.

According to (3) the characterizing condition
κg,1(s)≡±κg,2(s) ∀s ∈ I is equivalent to

|φ1(s)±φ2(s)|= 2ω = const. ∀s ∈ I (4)

with some constant angle ω which can be re-
stricted to [0,π/2]. The sign in (4) is determined
by the orientation of the vectors ei. This orienta-
tion can be chosen such that we can use the sum
in (4). The spherical image c′(s) of the tangents
of the curve c then has to be part of a spherical
conic k with two of its foci determined by the

2As the two planar parts can be arranged in two different
ways we have to admit the negative sign too.
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direction vectors ei. The angle 2ω determines
the spherical length of one axis of this spherical
conic. The corresponding vertices will be de-
noted by vi. The angle between e1 and e2 shall
be denoted by 2α with 0≤ α < ω - see Figure 1.

Then we have

cosφ1(s) =
= cosφ2(s)cos2ω∓ sinφ2(s)sin2ω

(5)

for all s ∈ I. This yields the following condition
on the tangent vectors c′

(〈c′,e1〉−〈c′,e2〉cos2ω)2 =

= (1−〈c′,e2〉2)sin2 2ω.
(6)

With the help of 〈c′,c′〉 = 1 ∀s ∈ I (6) can be
rewritten as

〈c′,e1〉2−2〈c′,e1〉〈c′,e2〉 cos2ω+

+〈c′,e2〉2 = 〈c′,c′〉 sin2 2ω.
(7)

This is a homogeneous quadratic equation for the
unit tangent vectors c′ to our curve. The tangents
of the given space curve c(s) have to be parallel
to the generators of a quadratic cone3 Γ. Accord-
ing to (4) the direction vectors e1,2 of the two
cylinders f1,2 define the real focal lines of the
quadratic cone Γ.

Remarks: a) Spatial curves c(s) with tangents
parallel to a quadratic cone Γ of degree 2 (but not
a cone of rotation) determine a spherical conic
k containing the spherical image of the tangent
vectors c′(s). This spherical conic k, in general,
has six foci - exactly two of them are real, if the
conic is no circle. They determine the directions
e1,2 of the generators of the two cylinders f1,2
through c. Through any curve c of that type there
exist two different cylinders f1,2 such that c(s)
has the same geodesic curvature with respect to
these two cylinders.

b) Any regular affine mapping α transforming
Γ into a cone of revolution transforms k into a
circle on the unit sphere. The tangents of α(c)

3That cone has the vertex O and contains the spherical
conic k.

then are parallel to the cone of revolution α(Γ)
- α(c) is a curve of constant slope. Thus the
original curve c by α−1 is affinely equivalent to
a curve of constant slope. Each curve affinely
equivalent to a curve of constant slope admits a
representation equivalent to (7) and therefore has
the desired property.

c) If the curve c really is a curve of constant
slope the spherical image of its tangents forms
a part of a circle - the real foci of this special
spherical conic collapse. In this special case the
two cylinders f1,2 through c coincide. So we
will have to exclude this trivial case in further
considerations.

A very special and exceptional case occours for
ω = k π/2, k ∈ {1,2,3}: Then we have cos2ω =
cos(k π) = (−1)k and equation (7) yields〈

c′,e1
〉
∓
〈
c′,e2

〉
= 0. (8)

This is a homogenous linear equation for the co-
ordinates of the tangent vectors c′(s) - the corre-
sponding curves c(s) are planar. The two cylin-
ders are gained by reflection in the plane of c(s).

This can be summarized in the following char-
acterisations of CFC-triplets (e1,e2,c(s)) - see
the example in Figure 2:

Theorem 3.1 Let c(s) be a C2-curve with the
same geodesic curvature with respect to two dif-
ferent cylinders (generators with directions e1,2)
at any of its points. Then the tangents of c(s)
have to be parallel to the generators of a cone Γ

of degree 2 which is not a cone of revolution. The
directions e1,2 determine two of the focal lines
of Γ. The cone Γ can degenerate into a plane
- in this case the curve c(s) is planar - the two
directions e1,2 then are symmetric with respect to
that plane.

Theorem 3.2 Through any curve c, either pla-
nar or with tangents parallel to a cone Γ of de-
gree 2 (which is not a cone of revolution) there
exist two different cylinders f1,2 such that c(s)
has the same geodesic curvature with respect to
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Figure 2: The spherical conic k of the tangent vectors c′(s) of an affinely transformed helix c(s) and
the two cylinders f1,2 given by the corresponding CFC-triplet (e1,e2,c(s)).

these two cylinders. The directions of the genera-
tors of these two cylinders are determined by the
real focal lines of Γ. If c(s) is planar, any pair
of cylinders through c symmetric with respect to
the plane of c has the desired property. Exactly
the curves c(s) of these two special classes and
the directions e1,2 corresponding to the real focal
lines of the cone Γ form CFC - triplets for curved
Origami with pairs of cylinders.

4. FROM THE SPATIAL CONFIGURA-
TION TO THE PLANAR ORIGAMI

We start with a spatial curve c(s) constructed
according to Theorems 3.1 and 3.2. The corre-
sponding cylinders f1,2 have generators parallel
to e1,2. The planar Origami configuration shall
be generated by two series of isometries γ1,2(t)
of f1 and f2 into a common plane π . The real
t ∈ [0,1] shall parametrize these two continous
sets of transformations: t = 0 shall give the iden-
tity map, t = 1 shall give the result in π . All these

isometries shall be MINDING isometries, which
keep the generators of the cylinders during these
isometries (see [6], p. 277). γ1,2(t) transform the
curve c(s) into two series c1,2(s, t). The genera-
tors e1,2 are mapped into e1(t) := γ1(t)(e1) and
e2(t) := γ2(t)(e2). If possible, we would like to
choose the two series γ1,2(t) of isometries such
that c1(s, t) = c2(s, t) for all t ∈ [0,1], s ∈ I.

If this is possible we will call γ1,2(t) two cou-
pled Origami foldings for the spatial configura-
tion of the two cylinders. In this special case all
intermediate stages c1(s, t) = c2(s, t) for fixed t
together with e1,2(t) again have to define a CFC-
triple. Theorems 3.1 and 3.2 have to be valid
for all fixed t ∈ [0,1]. As an isometry does not
change angles on the surface the constant 2ω in
formula (4) is valid for all possible intermediate
stages. The angle between e1(t) and e2(t) has to
change from 2α for the initial state to 2ω for the
final planar arrangement - see Figures 1 and 3.
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Now we want to work out a necessary
condition for this possible case: We use
a Cartesian coordinate frame, put e1,2(t) :=
(0,±sinu(t),cosu(t))t with u(t)= (1−t)α+tω
and c′(s, t) := (x(s, t), y(s, t), z(s, t))t . This way
t ∈ [0,1] yields u(t) ∈ [α,ω]. Then (7) yields the
equation of the corresponding cones of degree
two

Γ(t) . . .0 = x2 sin2
ω cos2 ω+

+(sin2
ω− sin2 u)(y2 cos2 ω− z2 sin2

ω)
(9)

with u(t) = (1− t)α + tω . The starting config-
uration relates to u(0) = α , the corresponding
planar Origami is reached for u(1) = ω . Equa-
tion (9) defines a pencil of cones of degree two,
all with symmetry with respect to the three coor-
dinate planes and two real vertex generators in
the directions

v1,2 = (0,±sinω, cosω)t . (10)

Remark: The notations e1,2 and Γ from Chapter
3 now have to be identified with e1,2(0) and Γ(0),
respectively.

The vectors e1,2(t) determine the two real fo-
cal lines of Γ(t). The generators of Γ(t) can be
parametrized by

ysinu+ zcosu =
√

x2 + y2 + z2 cosv and
−ysinu+ zcosu =

√
x2 + y2 + z2 cos(2ω− v)

(11)
with the angle v ∈ [ω−α,2ω−α] of e1,2(t) and
c′(s, t). The values v = const. in (11) yield the
homogeneous equation of degree four for the cor-
responding cones Φ(v) of tangent vectors

(x2 + y2 + z2)[a(v)z2 +b(v)y2]
−y2z2 = 0 with
a(v) := sin2

ω sin2(ω− v),
b(v) := cos2 ω cos2(ω− v).

(12)

For coupled Origami foldings the tangent vectors
of any stage t ∈ [0,1] of the curve c(s, t) have to
be parallel to generators of the cone Γ(t). These
isometries keep the angles between the generators
e1,2(t) and the tangents c′(s, t). Thus, v = v(s) in

(11) can be used to parametrize the corresponding
generators on the cones Γ(t) during the Origami
folding. Figure 3 displays the intersections of the
cones Γ(t) and Φ(v) for some values of t and v
for α = π/4 and ω = 3π/4.
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Figure 3: Parts of the intersections of the
quadratic cones Γ(t) and the quartic cones Φ(v)
with the plane z = 1 for some values of t ∈ [0,1]
and v ∈ [ω−α,2ω−α].

The coupled Origami folding from the spatial
to the planar configuration yields a continous
deformation of the spherical image c′(v(s), t)
from t = 0 with c′(s) = c′(s,0) to t = 1 with
c′(s,1). There the point v1 on the starting config-
uration Γ(0) has to move on the possible path on
Φ(ω−α) towards e1(0) - see Figure 4. This can
either be done on the ’upper’ or the ’lower’ half
of Φ(ω−α). The same situation comes up for
v2 and e2(0). Thus, if c′(s) parametrizes a part of
k⊂ Γ(0) (see the bold parts in Figure 4) running
across one of the two vertices v1,2 the coupled
Origami folding from space to plane will split -
see c′(s, t) in that Figure. Such a folding will not
be possible without damaging the configuration.

Remark: Such a parametrization of c(s) with
position c′(s∗) = v1 or c′(s∗) = v2 is character-
ized by c′′(s∗) 6= o and orthogonality of the oscu-
lating plane [c′(s∗),c′′(s∗)] and the two tangent
planes [c′(s∗),e1(0)] and [c′(s∗),e2(0)] to the two
cylinders. In this extraordinary case the two tan-
gent planes of f1 and f2 at c(s∗) have to be coin-
cident.

This yields the following necessary condition
for the existence of a coupled Origami folding
for pairs of cylinders
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Figure 4: c′(s) viewed as c′(s,0) (bold on Γ(0)) is
running across v1 - the continous Origami folding
for t ∈ (0,1) has to split.

Theorem 4.1 For a spatial C2-curve c(s) with
tangents parallel to a cone Γ(0) of degree two
(but not a cone of revolution), the real focal lines
of Γ(0) determine direction vectors e1,2(0) which
- together with the curve c(s) - determine a CFC-
triplet. The two vertex generators in the plane of
the real foci e1,2(0) shall be denoted by v1,2. The
coupled Origami folding of the corresponding
CFC-triplet cannot be performed without damage
if the spherical image c′(s) covers parts on Γ(0)
running over v1 or v2.

Remark: This is only a necessary but not a
sufficient condition for the existence of a coupled
Origami folding from the spatial to the planar
arrangement with cylinders. The folding can be
physically impossible even if the configuration
does not fall into the realm of Theorem 4.1.

5. THE DISCRETE VERSION
The spatial C2-curve c(s) can be replaced by a
spatial polygon p := {p j, j = 0, . . . ,n} with ver-
tices p j. The cylinders f1,2 then are replaced by
two prisms with generators parallel to unit vec-
tors e1,2. The problem of curved Origami with
pairs of cylinders turns into a problem of polygo-

nal Origami with pairs of prisms: If there are two
isometries γi (i = 1,2) of the two prisms fi into a
plane π such that the two planar polygons γ1(p)
and γ2(p) are related in a planar displacement
we will speak of a discrete curved Origami fold-
ing with pairs of prisms. In this special case the
corresponding triple (e1,e2,p) consisting of two
unit vectors e1,2 and the spatial polygon p will be
called triple for polygonal Origami folding with
pairs of prisms or for short PFP-triple.

In this case the angles φi, j (i = 1,2; j =
0, . . . ,n− 1) between the polygon’s segments
on the lines [p j,p j+1] and the generators of the
prisms (parallel to ei) are kept under the two
isometries γi (i = 1,2). The two isometries map
the directions ei into e∗i := γi(ei). In the plane π

for a given PFP-triple (e1,e2,pi) we get

|φ1( j)±φ2( j)|= 2ω = const. (13)

for all j = 0, . . . ,n−1. This is the counterpart to
(4) for the discrete case. Thus, our considerations
for the continous case can easily be transferred
to the discrete case. Theorems 3.1 and 3.2 have
the following discrete counterpart:

Theorem 5.1 A polygon p and two direction vec-
tors e1,2 for prisms through the polygon make up
a PFP-triple for discrete curved Origami with
pairs of prims exactly in one of the following two
cases: Either p is a planar polygon or the seg-
ments [p j,p j+1] of the polygon p are parallel to
the generators of a cone Γ of degree 2 which is
not a cone of revolution. In the first case the direc-
tions e1,2 are symmetric with respect to the plane
of the polygon, in the second case they determine
the two real focal lines of Γ.

Theorem 4.1 can be transferred to the discrete
case in the same way:

Theorem 5.2 We start with a polygon p and two
direction vectors e1,2(0) forming a PFP-triple.
The segments [p j,p j+1] of the polygon p are par-
allel to the generators of a cone Γ(0) of degree 2
which is not a cone of revolution. The two vertex
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generators in the plane of the real foci e1,2(0)
shall be denoted by v1,2. The coupled Origami
folding of the corresponding PFP-triplet cannot
be performed without damage if the spherical im-
age of the polygon’s segments [p j,p j+1] covers
parts on Γ(0) running over v1 or v2.

6. CONCLUSIONS
We studied the problem of curved Origami fold-
ing with pairs of cylinders (generators parallel
to e1,2) meeting in curve c(s). We speak of a
CFC-triple if the configuration can be isomet-
rically transformed into a planar Origami. We
were able to characterize these curves as affine
images of curves of constant slope. Their spheri-
cal image c′(s) must be contained in a spherical
conic (but not in a circle). The real foci of this
spherical conic uniquely determine the directions
e1,2 of the generators of the two possible cylin-
ders through such curves c(s). We worked out
a necessary condition for possible Origami fold-
ings from the spatial to the planar arrangement.
Fortunately, the results can be transferred to the
discrete case without any reservations.
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